
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Proposing a JSON structure for

calculation results

W. Haeck

WPEC SG45, June 24-28, 2019

6/27/2019 | 2Los Alamos National Laboratory

June 24-28, 2019

WPEC SG45, Paris, France

• Introduction

• Overview

• Python coding and examples

Every calculation code gives its result in its own format

• MCNP (LANL): the output file, the mctal file, the ptrac file, etc.

• PARTISN (LANL): the output file, etc.

• MORET (IRSN): the output file, an XML file, etc.

The results we’re interested in are however the same

• Single values: keff, beff, etc.

• Histogram data: particle spectra, reaction rates, sensitivity profiles, etc.

• Pointwise data: nuclide composition as a function of time, etc.

Introduction

6/27/2019 | 3Los Alamos National Laboratory

A calculation result consists of two distinct components

• Attributes (or metadata) that give information about the result

• What type of result is it?

• What nuclide and reaction is it for (if it is a reaction rate)?

• What volume is it for (if it is a particle spectrum)?

• Which code and version produced the result?

• Which nuclear data library was used to produce the result?

• This is what we will want to search and filter on

• The actual calculation result

• Values for the result: a single value, an array of values, an array of arrays of values, etc.

• Optional uncertainties: in the same form as the values for the result

• The structure of the result: a histogram of flux values as a function of incident energy, etc.

• Optional units for the values and uncertainties

• This is what we will want to compare, store, exchange, plot, etc.

General calculation results

6/27/2019 | 4Los Alamos National Laboratory

There are some requirements to a structure to store these

• A result should stand by itself

• I don’t need to look in multiple places to be able to understand it

• For example: for a particle spectrum, I should have the group structure at the same time, etc.

• It should be calculation code agnostic

• I don’t need to know where it came from to understand it

• It should be result type agnostic

• I can use it for any result, even the ones I have not thought of yet

• It should be relatively easy to interact with through different scripting or programming

languages

• I can use it in python or C++, etc.

• It should be relatively light weight, as in not impose a heavy infrastructure

• It should not be Microsoft excel – that should be obvious …

General calculation results

6/27/2019 | 5Los Alamos National Laboratory

General calculation results

6/27/2019 | 6Los Alamos National Laboratory

[{ 'type' : 'effectiveMultiplicationFactor’,

'data' : { 'values' : [1.0000],

'uncertainties' : [0.0001] } },

{ 'type' : 'sensitivityProfile',

'response' : 'keff',

'parameter' : 'xs',

'particleId' : 'neutron',

'nuclide' : '92235',

'reaction' : 'fission',

'material' : 'total',

'data' : { 'values' : [-1.7129e-17, 1.4106e-09],

'uncertainties' : [0.0034, 0.0033],

'structure' : [{ 'name' : 'energy-in',

'type' : 'histogram',

'limits' : [1e-11, 10.0, 20.0],

'unit' : 'MeV'}],

'units' : { 'value' : '%/%', 'uncertainty' : 'relative' } } }]

type is an essential attribute and should be always be present

• Indicate the type of result we’re storing

• Possible values that are currently identified: effectiveMultiplicationFactor,

effectiveDelayedNeutronFraction, effectiveNeutronGenerationTime,

thermalFissionFraction, aboveThermalFissionFraction,

averageEnergyCausingFission, energyAverageLethargyFission,

particleSpectrum, particleFlux, particleCurrent, reactionRate,

sensitivityProfile

Some attributes will appear based on the value of type

• For example, for sensitivityProfile :

• response : for which “response function” we have a sensitivity Τ𝜕𝑟 𝜕𝑝, e.g. keff

• parameter : the sensitivity of the response is given with respect to a parameter

• nuclide : the nuclide for which a sensitivity profile is given

• reaction : the reaction for which the sensitivity profile is given, e.g. fission, n,gamma

• material : the material in the model for which the sensitivity is given

Attributes

6/27/2019 | 7Los Alamos National Laboratory

Some attributes could appear based on the application but should be
independent of the value of type

For example (we do not use these yet):

• code : which calculation code generated the result, e.g. mcnp, cog, partisan, ardra

• date : the calculation date

• library : the nuclear data library, e.g. endf/b-viii.0

• temperature : the temperature of the material for which the result is given

The way attributes are stored and defined makes it flexible enough

for extension

• Retrieving a non-existent attribute is NOT an error, it is simply undefined

• This allows for filters to function properly

Attributes

6/27/2019 | 8Los Alamos National Laboratory

As indicated earlier, a calculation result consists of the following:

• A one dimensional array of values, this is always present

• An optional one dimensional array of uncertainties

• The structure of the values and uncertainties

• This is a list of dimensions that defines how to interpret the the values and

uncertainties

• This is not required if the values array contains a single value

• An optional set of units, one for a value and another one for an uncertainty

values and uncertainties are always an array

• This even applies to a single value (every result needs to look like another one)

Data

6/27/2019 | 9Los Alamos National Laboratory

The structure of a result is made up of dimensions, defined by:

• name : the name for the dimension, e.g. energy-in

• type : the type of the dimension, either histogram or points

• limits : the bins or points for which we have data in the current dimension

• unit : an optional unit for the dimension

A one dimensional result will have only one dimension, and so on

• A particle spectrum integrated over a given number of energy bins has one dimension

• A sensitivity profile for the fission spectrum can have an incident energy dimension

and an outgoing energy dimension

• The order of the dimensions determines the order of the values (obviously)

Dimensions and the structure of the result

6/27/2019 | 10Los Alamos National Laboratory

The dimension type can be mixed over multiple dimensions

• I can use a first dimension that gives me points in time followed by a second

dimension that gives me histograms for each point in time (e.g. changes in particle

spectrum as a function of time)

[{ 'name' : 'time', 'type' : 'points',

'limits' : [0, 1, 2], 'unit' : 'days' },

{ 'name' : 'energy', 'type' : 'histogram',

'limits' : [1e-5, 1.0, 2e+7], 'unit' : 'eV' }]

The number of values and uncertainties is directly linked to the

dimension

• Dimensions must be present as soon as there is more than 1 value in the arrays

Dimensions and the structure of the result

6/27/2019 | 11Los Alamos National Laboratory

Python interface

6/27/2019 | 12Los Alamos National Laboratory

retrieve attribute information with the 'attributes' property on Result

type = result.attributes.type # 'sensitivityProfile'

nuclide = result.attributes.nuclide # '92235'

reaction = result.attributes.reaction # 'fission’

date = result.attributes.date # None, 'date' attribute is not present

retrieve the data

values = result.values # result.data.values also works here

groups = result.structure[0].limits

valueUnit = result.units.value

data can also be retrieved through its own property

data = result.data

values = data.values

groups = data.structure[0].limits

valueUnit = data.units.value

Python interface

6/27/2019 | 13Los Alamos National Laboratory

factory functions to create new results from data

overloaded functions to allow for flexibility

myResult = makeKeffResult(1.0001)

myResult = makeKeffResult(1.0001, 0.0005) # the uncertainty is optional

myResult = makeEffectiveNeutronGenerationTimeResult(5.62578, 'ns')

myResult = makeEffectiveNeutronGenerationTimeResult(5.62578, 0.00713, 'ns’)

can be provided for every result type to make it easier for the user

myResult = makeKeffResult(...)

myResult = makeEffectiveDelayedNeutronFractionResult(...)

myResult = makeEffectiveNeutronGenerationTimeResult(...)

myResult = makeAverageNeutronEnergyCausingFissionResult(...)

myResult = makeAboveThermalFissionFractionResult(...)

myResult = makeSensitivityResult(...)

note: we may change this for a fluent builder interface

Python interface

6/27/2019 | 14Los Alamos National Laboratory

we have an interface over MCNP and SENSMG outputs to use this structure

mcnp = McnpOutput([McnpEffectiveMultiplicationFactor(),

McnpPointKinetics(),

McnpSensitivityProfiles()])

mcnp.extract('HEU-MET-FAST-001-001.mcnp.o’)

retrieve the results

results = {}

results['HEU-MET-FAST-001-001'] = mcnp.toResults()

we have json serialisation and deserialization in place

toJSON(results, 'mcnp.results.json', indent = 2)

resultsFromJSON = fromJSON('mcnp.results.json’)

results and resultsFromJSON are the same

print(results == resultsFromJSON) # should be true

Python interface

6/27/2019 | 15Los Alamos National Laboratory

getting keff and above thermal fission fraction for a set of benchmarks

benchmarks = []

keffValues = []

atffValues = []

go over the results for each benchmark

for name, list in results :

keff = [result.values[0] for result in results

if result.attributes.type == 'effectiveMultiplicationFactor']

atff = [result.values[0] for result in results

if result.attributes.type == 'aboveThermalFissionFraction']

if keff and atff :

benchmarks.append(name)

keffValues.append(keff[0])

atff.append(atff[0])

now we can go plot this data ...

Python interface

6/27/2019 | 16Los Alamos National Laboratory

another filter example: get all sensitivity profiles for U235 xs

nuclide = '92235'

search = [result for result in results

if result.attributes.type == 'sensitivityProfile' and

result.attributes.nuclide == nuclide]

retrieve and print all reactions of U235 for which we have profiles

reactions = [result.attributes.reaction for result in search]

print(reactions) # ['fission’]

Use a NoSQL document database for storing results

• MongoDB, CoachDB, etc.

• Would allow easier searching instead of having to loop all the time

Open source the python coding and release it for VaNDaL

Considerations for the future

6/27/2019 | 17Los Alamos National Laboratory

