IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Benchmark Inter-comparison Study

J.L. Alwin, F.B. Brown, M.E. Rising,

K.Y. Spencer - LANL

D. Heinrichs, S. Kim - LLNL

B.J. Marshall, E.M. Saylor - ORNL

Isabelle Duhamel - IRSN

June 2019

Benchmark Intercomparison Study: COG, KENO, MCNP, MORET

- New benchmark intercomparison using various nuclear data libraries JEFF-3.3, ENDF/B-VII.1 and ENDF/B-VIII.0
- \succ Use of codes validations suites benchmarks \rightarrow independent modeling

Provide a rigorous basis for quality and validating nuclear data libraries

Data available at IRSN

Systems	MORET 5 (IRSN)	COG (LLNL)	MCNP (LANL)	KENO (ORNL)
PU	215	526	261	93
HEU	457	761	378	102
IEU	18	188	13	13
LEU	449	366	209	159
MIX	164	28	73	61
U233	32	193	158	190

- Comparison envisioned over 3 years
 2019 : HEU and Pu systems
- PU systems : 748 cases available (95 evaluations) in ICSBEP Handbook (2018)
 Only 33 commons cases for PU in KENO, MCNP, COG and MORET validation suites

HEU: 1426 cases available (225 evaluations) in ICSBEP Handbook (2018)
 Only 35 commons cases for HEU

Main issues for the intercomparison

ICSBEP revisions

- Not indicated in MCNP, COG and SCALE Excel files
- Always the last revision in the MORET 5 validation suites (check each year)
- Could impact geometrical or materials data (sometimes revisions are issued to add new calculations in section 4)
- Benchmark \boldsymbol{k}_{eff} and uncertainty could sometimes help to solve this issue

HEU systems (225 evaluations)

- 148 revisions 0
- 37 revisions 1
- 28 revisions 2
- 9 revisions 3
- 3 revisions 4

Pu systems (95 evaluations)

- 50 revisions 0
- 32 revisions 1
- 9 revisions 2
- 3 revisions 3
- 1 revisions 4

Main issues

JEZEBEL experiment (PMF001-001)

4 releases since 1995 - Last one in September 2016 by J. Favorite LANL

Revisions 0 to 2

A solely simplified model based on 2 configurations

Bare sphere of Delta phase Plutonium alloy 17.02 kg with density of 15.61 g/cm3 R= 6.3849 cm

Simplified Benchmark keff = 1.0000+/- 0.002

<u>Revision 3 (2013)</u>

4 detailed configurations and a simplified model

Bare sphere of Delta phase Plutonium alloy 17.073 kg with density of 15.61 g/cm3 R= 6.39157 cm

Simplified Benchmark keff = 1.0000+/- 0.00129

<u>Revision 4 (2016)</u>

4 detailed configurations and a simplified model

Mass, densities and dimensions have been reviewed for detailed configurations

Simplified Benchmark keff = 1.0000+/- 0.0011

ETSOD

Main issues

Simplified or detailed model ?

- Not always indicated in MCNP and SCALE Excel files
- Benchmark k_{eff} and uncertainty could sometimes help to solve this issue
- Could explain small significant discrepancies observed between codes

Cross references in ICSBEP

- Example: HEU-MET-FAST-007
 - Cases 11, 12, 14 and 31 are referenced as HEU-MET-INTER-007
 - Cases 13, 15, 16, 17, 18, and 36 to 43 as HEU-MET-MIXED-009

Some cases referenced differently in validation suites

Main issues

Benchmark and DICE numbering

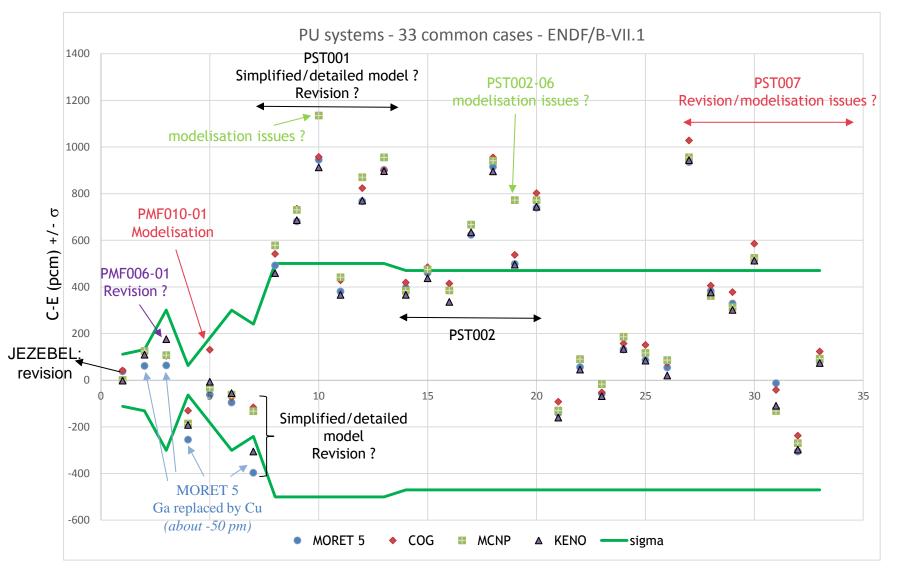
- PU-SOL-THERM-07: Numbering in DICE (1 to 8) doesn't correspond to numbering in the benchmark (2, 3, 5 to 10, cases 1, 4 and 11 being unacceptable)
- KENO uses DICE numbering, whereas MCNP, COG and MORET use benchmarks one

	MORET	COG	MCNP	KENO	
Case 3	1.00382 +/- 0.00010	1.00406 +/- 0.00018	1.00361 +/- 0.00013	1.00901 +/- 0.00010	Corresponds to case 5
					1.00376 - 0.00010

ICSBEP/DICE issues

- HCM-003 sigma = 0 !
- HMF004-01 sigma = 0 !

Modeling issues and misunderstandings of benchmarks

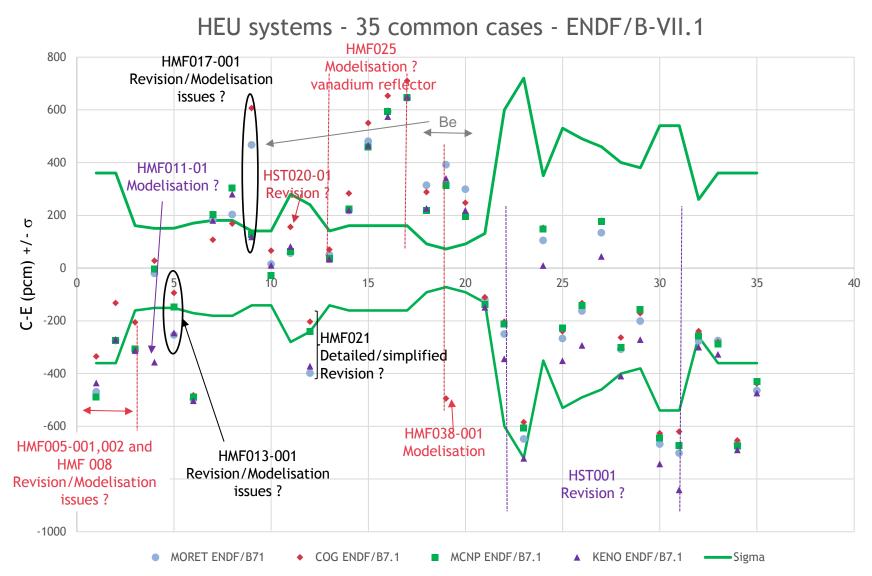


(PST007-002 in KENO validation suite)

Preliminary analyses

MC Standard deviations

Below 0.00020



Preliminary analyses

MC Standard deviations

Below 0.00020

Feedback on nuclear Data

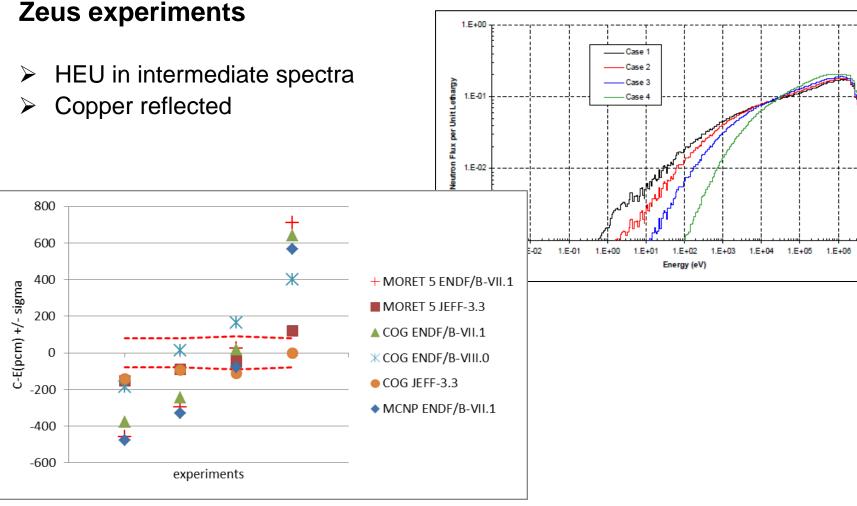
Plutonium solutions

MC Standard deviations

Below 0.00020

ENDF/B-VII.1 MORET 5 **MCNP** k_{eff} COG **KENO** Δ 1,012 sigma Benchmark keff 1,010 **7** * 1,008 1,006 ENDF/B-VIII.0 and JEFF-3.3 MORET 5 ENDF/B-VIII.0 1,004 COG ENDF/B-VIII.0 Δ * MORET5 JEFF-3.3 COG JEFF-3.3 1,002 k_{eff} Δ 💂 Benchmark keff sigma 1,000 1.00800 0,998 1,00600 0.996 1,00400 0,994 1,00200 Experiments 1,00000 0,99800 0.99600 0,99400 0,99200 0,99000 **Experiments**

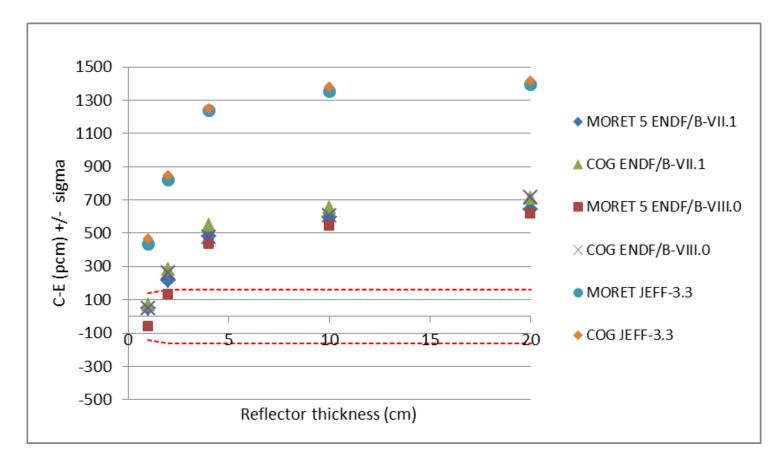
> Pu improvement in thermal spectrum with ENDF/B-VIII.0 and JEFF-3.3



1.E+07

Feedback on nuclear Data

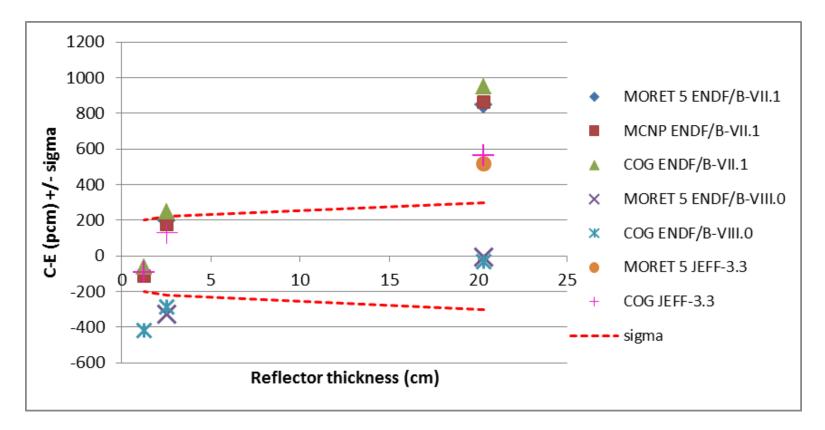
□ MC Standard deviations


Below 0.00020

- Strong improvement with JEFF-3.3
- Tendancy with spectrum with ENDF/B-VIII.0

Feedback on nuclear Data DC Standard deviations Below 0.00020

Vanadium reflected fast experiments



- Worse results with JEFF-3.3
- Small discrepancies between MORET and COG with ENDF/B-VIII.0

FISOL

Feedback on nuclear Data DC Standard deviations Below 0.00020

Nickel reflected fast experiments

- Improvement with ENDF/B-VIII.0 and JEFF-3.3 (2 sigma)
- Improvement still needed, the increasing trend highlighted with the reflector thickness being still observed

Conclusion

Improvement of the codes validation suites

Use for sensitivity/uncertainty studies

Feedback to ICSBEP

- Experimental data quality
- D Misunderstanding in benchmark model
- □ Suspicious data or experimental uncertainties

Feedback to Nuclear Data

- JEFF and ENDF
- Processing tools
- New evaluations need

Need of additional uncorrelated experiments ?

Conclusion

Common publication planned

Other systems to be analyzed in FY2020 to FY2022

- 2020 IEU, LEU
- 2021 MIX, U233, SPEC
- 2022 Final report

