JEFF-DOC 1053

Thermal Neutron Scattering Cross Sections for H in CaH₂ and Ca in CaH₂

O. Serot

CEA - Cadarache, DEN / DER / SPRC / LEPh, Bat. 230, F- 13108 St Paul lez Durance CEDEX, France

1

4 Context

- **4** CaHx phonon frequency spectrum measurement
 - Samples
 - Experimental setup
 - Measurement and data reduction
 - Interpretation

4 Thermal neutron scattering cross section for H in CaH₂

- Formalism
- NJOY calculations
- Results

 \downarrow Thermal neutron scattering cross section for Ca in CaH₂

4 Conclusion and outlook

Context (1)

4 In the frame of possible methods for the transmutation of actinides and/or long lived fission products: **experimental programs** have been proposed to investigate the neutronic characteristics of fast reactor cores containing small quantities of various moderator materials:

COSMO: carried out in MASURCA reactor (1999-2000).

- **ECRIX** : planned in PHENIX reactor with
 - \implies B₄C: **ECRIX-C** experiment
 - ZrHx and CaHx: **ECRIX-H experiments**

4 Validation of these experimental programs must be done from deterministic and stochastic neutronic codes (ERANOS, MCNP)

Thermal inelastic scattering cross sections are needed:
thermal data already exist for zirconium hydride,
No such data is readily available for calcium hydride

4 Interests in using CaH₂ moderator material:

- Relatively stable in liquid sodium,
- Good mechanical properties,
- High density of Hydrogen,
- No activation by neutron irradiation.

In this context, and due to the lack of information on H-CaHx thermal cross section:

A measurement of the CaHx phonon frequency spectrum at the ILL High Flux Reactor facility in Grenoble (France) has been carried out

From this spectrum, the thermal scattering cross sections for H bound in CaHx and Ca bound in CaHx were deduced

4 Context

œ

4 CaHx phonon frequency spectrum measurement

- Samples
- Experimental setup
- Measurement and data reduction
- Interpretation

4 Thermal neutron scattering cross section for H in CaH₂

- Formalism
- NJOY calculations
- Results

4 Thermal neutron scattering cross section for Ca in CaH₂

4 Conclusion and outlook

CaHx Phonon frequency spectrum measurement (1)

This experiment has been performed by: *P. Morris, D.K. Ross, S. Ivanov, D.R. Weaver and O. Serot* All the details can be found in Ref [1]

Samples used:

Impurity in CaHx sample is made of $Ca(OH)_2$ due to the high affinity for hydrogen binding with oxygen from the air.

So, three samples (powder samples) were used:

- CaH_x unexposed to air (~95% pure)
- Ca(OH)₂ (for reference)
- CaH_x exposed to air during 12 hours

The exact stochiometry of the samples is not currently known but is thought to be close to two $(x\sim 2)$.

CaHx Phonon frequency spectrum measurement (2)

Experimental Setup: Three Axis Spectrometer (IN1 at Laue Langevin Institute)

The neutrons detected (He3) with a fixed final energy (4meV) were recorded for monochromatic incident neutrons over 15 - 200 meV energy range.

4 Axis Monochromator - Sample:

Select the energy of the incident neutrons, according to the Bragg's diffraction law.

4 Axis Sample - Analyser:

Select the scattering angle (fixed in our experiment).

Axis Analyser - Detector: Select only the scattered neutrons with about 4 meV.

Heutron Monitor:

Control the flux of the incident neutrons. A total count of 250,000 was accumulated for each energy point before moving to the next.

CaHx Phonon frequency spectrum measurement (3)

4 Identical spectra for $Ca(OH)_2$ and CaHxexposed to air, except differences of the intensity due to different amounts of sample in the beam (which were loaded by hand).

The CaHx exposed to air has been transformed into Ca(OH)₂

Lonsequently, the large peak centred at around 40 meV is almost certainly due to O-H vibration. The same peak is present in the CaHx unexposed confirming a small contamination of this sample with oxygen.

CaHx Phonon frequency spectrum measurement (4)

Comparison with previous measurements (all curves were normalised at 80 meV):

- The first optical mode (75-105 meV) observed by both Maeland [2] and Bergsma [3]
- The second optical mode (110-140 meV) observed by Maeland [2]

CaHx Phonon frequency spectrum measurement (5)

Interpretation of the CaHx phonon frequency spectrum

One acoustic mode around
 20 meV which corresponds to vibrations where the motions of the H and Ca atoms are in phase; This mode could be in principle described by a Debye spectrum;

Two optical modes:
 between 75 and 105 meV,
 between 110 and 140 meV
 Correspond to the vibrations of the H-atoms from two different sites.

Fine structure or sub-peaks visible in each optical mode

Consistent with the known crystal structure of CaHx, which has two H sites, one a distorted octahedral site (lower band) and the other a distorted tetrahedral site (upper band) (see Ref. [4,5,6])

4 Context

CaHx phonon frequency spectrum measurement

- Samples
- Experimental setup
- Measurement and data reduction
- Interpretation

4*Thermal neutron scattering cross section for H in CaH*₂

- Formalism
- NJOY calculations
- Results

4 Thermal neutron scattering cross section for Ca in CaH₂

4 Conclusion and outlook

Thermal neutron scattering cross section for H in $CaH_2(1)$

Formalism

It can be shown that the double differential scattering cross section of solids consisting of randomly ordered micro crystals takes the form (see Ref.[7]): $d\sigma = \sigma \sqrt{E'}$

$$\frac{d\sigma}{d\Omega \, dE} = \frac{\sigma_{b}}{2KT} \sqrt{\frac{E'}{E}} S(\alpha, \beta)$$

S(α , β) is the so-called scattering laws that need to be calculated for the given material,

 σ_b = characteristic bound scattering cross section for the material

- E, E': incident and scattered neutron energies in the lab frame
- m: cosine of the scattering angle in the lab frame

The dimensionless parameters α and β take the forms:

$$\begin{cases} \alpha = \frac{E' + E - 2\mu\sqrt{E'E}}{AkT} \quad \longrightarrow \quad Momentum \ transfer \\ \beta = \frac{E' - E}{kT} \quad \longrightarrow \quad Energy \ transfer \end{cases}$$

Thermal neutron scattering cross section for H in $CaH_2(2)$

4 Working in the **incoherent and gaussian approximations**, the S(α , β) takes the following form:

$$S(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} \cdot e^{-\gamma(t)} dt$$

with $\gamma(t) = \alpha \int_{-\infty}^{\infty} P(\beta) [1 - e^{-i\beta t}] e^{-\beta/2} d\beta$
and $P(\beta) = \frac{\rho(\beta)}{2\beta \sinh(\beta/2)}$

Where $\rho(\beta)$ is the phonon frequency spectrum, usually found by direct measurement:

 $\int_0^\infty \rho(\beta) d\beta = 1$

Expanding the $exp(-\gamma(t))$ term leads to the so-called 'phonon expansion' expression:

Thermal neutron scattering cross section for H in $CaH_2(3)$

Remark:

This weighting factor could be deduced from rigorous lattice dynamic model (see Ref. [10,11]). Further investigations are needed on the matter. The spectrum was obtained using the following approximation:

In the case of the ZrH2, the phonon frequency spectrum for H in ZrH2, has been calculated by Slaggie [8]. He shows that the weight of the acoustic part was: 1/242;

For H in CaH2, we have assumed that this weighting factor must be increased by the ratio: A_{Zr} / A_{ca} . In this way, we obtained: 1/106 (0.94%). A similar assumption was adopted by Picton [9] for TiH2

Thermal neutron scattering cross section for H in CaH_2 (4)

NJOY Calculations : MAT=8 (H-CaH₂) (performed for T= 296; 400; 500; 600; 700; 800; 1000 and 1200 K)

Thermal neutron scattering cross section for H in CaH_2 (5)

Results

Thermal incoherent elastic cross sections (0 phonon exchange)

$$\begin{cases} \sigma(E) = \frac{\sigma_{b}}{2} \left\{ \frac{1 - e^{-4WE}}{2WE} \right\} \\ W = \frac{\lambda}{AkT} \quad \text{(Debye -Waller factor)} \end{cases}$$

Thermal incoherent inelastic cross sections (one and more phonons exchange)

Thermal neutron scattering cross section for H in CaH_2 (6)

Examples of secondary neutron energy spectra from H in CaH₂ for various incident neutron energies

JEFF Meeting / 24 - 26 November 2004

Thermal neutron scattering cross section for H in $CaH_2(7)$

The ENDF file for H in CaH₂ is ready for JEFF3.1:

JEFF-3.0	file header. Releas	se October	2004			1	0 0	0
1.00100	0+3 9.991700-1	-1	0	2	0	8	1451	1
0.00000	0+0 0.000000+0	0	0	0	6	8	1451	2
1.00000	0+0 0.000000+0	0	0	12	6	8	1451	3
0.00000	0+0 0.000000+0	0	0	61	3	8	1451	4
H(CaH2)	EVAL-0	OCT04 O.S	EROT CEA Ca	darache		8	1451	5
	DIST-0	OCT04				8	1451	6
JEFF	-3.0 MATER	IAL 8				8	1451	7
THERMAL NEUTRON SCATTERING DATA					8	1451	8	
EN	ENDF-6 FORMAT					8	1451	9
						8	1451	10
Tempera	tures = 296. 400. 50	00. 600. 70	0. 800. 100	0. 1200. K.		8	1451	11
						8	1451	12
The present evaluation is based on measurements of CaH2 phonon					8	1451	13	
frequency spectra performed at the ILL high flux reactor					8	1451	14	
(Grenoble/France) (ref 1). The contribution of the Ca(OH)2					8	1451	15	
impurity has been removed.					8	1451	16	
						8	1451	17
The phonon frequency spectrum obtained has the following					8	1451	18	
characteristics:						8	1451	19
						8	1451	20
	- an acoustic mode,	centered a	t around 20	meV.		8	1451	21
- two optic mode bands centered respectively in the energy					8	1451	22	
range 70-100 meV and 110-140 meV. In each optic mode, fine					8	1451	23	
structures could be observed and explained from the known					8	1451	24	
	crystal structure of	E CaH2 (ref	2,3).			8	1451	25
						8	1451	26

Thermal neutron scattering cross section for H in CaH₂ (8)

	In order to treat Hydrogen atom bound in CaH2, the acoustic mode	8 1451	27
	has been weighted relative to the optical modes by a factor 1/106	8 1451	28
\sim	(see Ref.4).	8 1451	29
Œ	This weighting factor was not deduced from rigorous lattice	8 1451	30
	dynamic model, but from physical grounds. This aspect could be	8 1451	31
	improved and further investigations are needed on the matter.	8 1451	32
		8 1451	33
	The S(alpha,beta) scattering laws have been generated using the	8 1451	34
	tools and methodologies given in ref 5. The alpha and beta grids	8 1451	35
	are the same as used for H in ZrH2 allowing energy transfers of	8 1451	36
	almost 2 eV at T=296. K.	8 1451	37
		8 1451	38
	The following ENDF MAT and MT's have been chosen in order to	8 1451	39
	remain compatible with other materials: MAT 8, MT 237 and 238 for	8 1451	40
	incoherent inelastic and elastic cross sections.	8 1451	41
		8 1451	42
	The following options have been used in the processing:	8 1451	43
		8 1451	44
	Leapr: spr 20.478, npr 1, iel 0	8 1451	45
	Thermr: icoh 0, natom 1, mtref 237	8 1451	46
	Acer: mti 237, mte 238, ielas 1 (incoherent elastic), nmix 1	8 1451	47

↓ Context

- CC 4 CaHx phonon frequency spectrum measurement
 - Samples
 - Experimental setup
 - Measurement and data reduction
 - Interpretation
 - **4** Thermal neutron scattering cross section for H in CaH₂
 - Formalism
 - NJOY calculations
 - Results
 - **+** Thermal neutron scattering cross section for Ca in CaH₂
 - **4** Conclusion and outlook

Thermal neutron scattering cross section for Ca in $CaH_2(1)$

Phonon frequency spectrum used for Ca in CaH₂;

Thermal neutron scattering cross section for Ca in $CaH_2(2)$

NJOY Calculations : MAT=59 (Ca – CaH₂) (performed for T= 296; 400; 500; 600; 700; 800; 1000 and 1200 K)

Thermal neutron scattering cross section for Ca in $CaH_2(3)$

Results (example T=296K)

Thermal neutron scattering cross section for Ca in $CaH_2(4)$

The ENDF file for Ca in CaH₂ is ready for JEFF3.1:

JEFF-3.0 file he	ader. Releas	e October 2	2004			1	0 0	0
2.000000+3 3.97	3190+1	-1	0	0	0	59	1451	1
0.000000+0 0.00	0000+0	0	0	0	б	59	1451	2
1.000000+0 0.00	0000+0	0	0	12	б	59	1451	3
0.000000+0 0.00	0000+0	0	0	61	3	59	1451	4
Ca (CaH2)	EVAL-O	CT04 O.SI	EROT CEA Ca	darache		59	1451	5
	DIST-0	СТ04				59	1451	б
ENDF/B-VI	MATERI.	AL 59				59	1451	7
THERMAL NEU	TRON SCATTER	ING DATA				59	1451	8
ENDF-6 FOR	MAT					59	1451	9
						59	1451	10
Temperatures = 296. 400. 500. 600. 700. 800. 1000. 1200. K.						59	1451	11
						59	1451	12
The present evaluation is based on measurements of CaH2 phonon						59	1451	13
frequency spectra performed at the ILL high flux reactor						59	1451	14
(Grenoble/France) (ref 1). The contribution of the Ca(OH)2						59	1451	15
impurity has been removed.						59	1451	16
						59	1451	17
The phonon frequency spectrum obtained has the following						59	1451	18
characteristics:					59	1451	19	
						59	1451	20
- an aco	ustic mode,	centered at	t around 20	meV.		59	1451	21
- two optic mode bands centered respectively in the energy					rgy	59	1451	22
range 70-100 meV and 110-140 meV. In each optic mode, fine					ine	59	1451	23
structures could be observed and explained from the known					vn	59	1451	24
crystal	structure of	CaH2 (ref	2,3).			59	1451	25
						59	1451	26

Thermal neutron scattering cross section for Ca in $CaH_2(5)$

	In order to treat Calcium atom bound in CaH2, the acoustic mode	59 1451	27
	has been weighted relative to the optical modes by a factor	59 1451	28
\sim	105/106 (see Ref.4).	59 1451	29
Œ	This weighting factor was not deduced from rigorous lattice	59 1451	30
	dynamic model, but from physical grounds. This aspect could be	59 1451	31
	improved and further investigations are needed on the matter.	59 1451	32
		59 1451	33
	The S(alpha,beta) scattering laws have been generated using the	59 1451	34
	tools and methodologies given in ref 5. The alpha and beta grids	59 1451	35
	are the same as used for H in CaH2 allowing energy transfers of	59 1451	36
	almost 2 eV at T=296. K.	59 1451	37
		59 1451	38
	The following ENDF MAT and MT's have been chosen in order to	59 1451	39
	remain compatible with other materials: MAT 59, MT 239 and 240	59 1451	40
	for incoherent inelastic and elastic cross sections.	59 1451	41
		59 1451	42
	The following options have been used in the processing:	59 1451	43
		59 1451	44
	Leapr: spr 3.0193, npr 1, iel 0	59 1451	45
	Thermr: icoh 0, natom 1, mtref 239	59 1451	46
	Acer: mti 239, mte 240, ielas 1 (incoherent elastic), nmix 1	59 1451	47
	••• •••		

4 Thermal scattering cross section for Hin CaH_2 and Ca in CaH_2 are needed for the interpretation of the ECRIX-H experiment (in PHENIX reactor)

The CaH_2 phonon spectrum has been measured at the three axis spectrometer of ILL institute

⁴ The measured phonon spectrum was transformed and then used in the LEAPR and THERMR modules from NJOY in order to get the $S(\alpha,\beta)$ scattering laws and cross section (in ENDF format) for H in CaH₂ and for Ca in CaH₂

4 However, bearing in mind the susceptibility of CaH_2 to contamination by oxygen it may be also effective to use the phonon spectrum incorporating the component due to OH binding

4 Validation of these data could be done from COSMO-3 experiment (where CaH₂ moderator material has been used) as well as from ECRIX-H experiment (near future)

References

 P. Morris et al., Journal of Alloys and Compounds 363 (2004) 85-89
 A.J. Maeland, J. Chem. Phys. 52 (1970) 3952-3956
 J. Bergsma, J.A. Goedkoop, IAEA Symposium on inelastic Scattering of neutrons in solids and liquids, Vienna, October 1960
 J. Bergsma and B. O. Loopstra, Acta Cryst. 15 (1962) 92-93
 A. F. Andresen et al., Journal of Solid State Chemistry, 20 (1977) 93-101
 D. K. Ross et al., Z.Phys Chem, 114 (1979) 221-230
 R E MacFarlane, NJOY suite of manuals, 'New Thermal Neutron Scattering Files for ENDF/B-VI release 2', August 1994.
 E.L. Slaggie, J. Phys. Chem. Solids, vol. 29 (1968) 923-934
 D. Picton, PhD thesis, University of Birmingham, 1981
 A.I. Hawari et al., 'Physor 2004', Chicago (USA), April 2004
 I.I. Al-Qasir et al., 'Physor 2004', Chicago (USA), April 2004