

Latest JEFF/EFF's Presentations on Neutron Thermal Scattering and Review of Recent International Activities

O. Cabellos OECD NEA/DB E-mail: oscar.cabellos@oecd.org

JEFF-NEEDS Workshop – Paris (France), November 24-25, 2014

Latest JEFF/EFF's Presentations

- EFFDOC-1205: "Thermal Scattering Libraries Processing", E. Castro, O. Cabellos.

November 2013.

Deliverable: Task 6.2. Thermal Scattering Libraries Processing Authors: E. Castro, O. Cabellos F4E-GRT-168.01. "Nuclear Data Improvements and Development of Tools – Nuclear Data Evaluation". 2012-13

 JEF/DOC-1524: "Propagation of U235-238, Pu239 and STL Nuclear Data Uncertainties for PWR core analysis", O. Cabellos. November 2013.

> PROPAGATION OF NUCLEAR DATA UNCERTAINTIES FOR PWR CORE ANALYSIS Authors: O. Cabellos, E. Castro, C. Ahnert, and C. Holgado Published: <u>http://dx.doi.org/10.5516/NET.01.2014.709</u> CSN, "Propagation of Uncertainties for Neutronic Calculations (P110530207) in Criticality Safety Analysis"

EFFDOC-1205: "Thermal Scattering Libraries Processing", E. Castro, O. Cabellos. November 2013.

Home About Us	Work Areas	Data Bank	Publications	Delegates' Area	Press Room
NUCLEAR ENERGY AGENCY				Search BETTER	POLICIES FOR BETTER LIVES
Data Bank > Computer program service					
NEA-1883 ZZ-TSL-AC	E/2013.		last modified	d: 05-MAR-2014 catalog categori	es new search 💦 RSS
ZZ TSL-ACE/2013, Thermal Scatter	ing Libraries processed	to ACE format			
NAME OR DESIGNATI			REFERENCES, HARDWARI MATERIAL, CATEGORIES	E REQUIREMENTS, LANGUAG	E,
1. NAME OR DESIGNATION: ZZ-	TSL-ACE/2013				[top]
2. COMPUTERS To submit a request, click below on the requesters are available here.	link of the version you w	ish to order. Only liais	on officers are authorise	d to submit online request	[top] s. Rules for
Program name	Pa	ckage id	Status	Status	date
ZZ-TSL-ACE/2013	NEA-1883/01		Arrived	05-MAR-2014	
Machines used:					
Package ID		Orig. computer		Test computer	
NEA-1883/01	Linux-based PC				
3. DESCRIPTION					[top]
Thermal neutron scattering c	ross section data :	libraries, proces	sed in ACE format	to be used with MC	NP.
Format: ACE.					
Number of groups: Continuous	energy.				
Processed Libraries: ENDF/B- JENDL-4.0, JENDL-4.0u	VI.8, ENDF/B-VII.0,	ENDF/B-VII.1, I	NDL-TSL, JEFF-3.1	, JEFF-3.1.1, JEFF-	3.1.2,

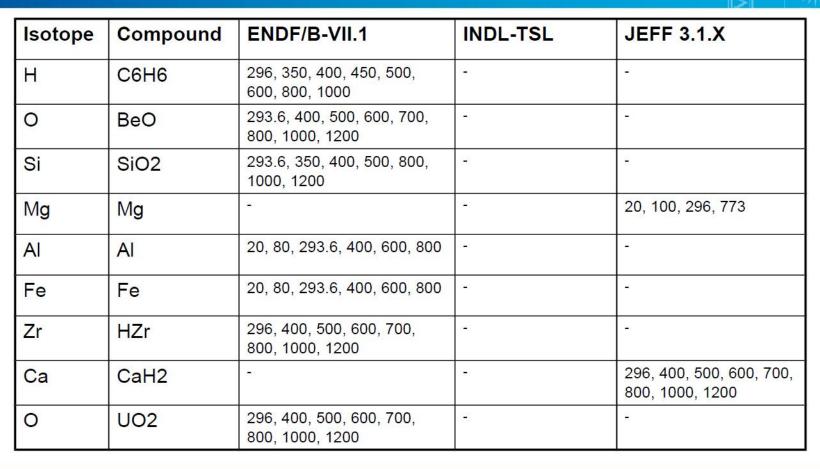
F4E-GRT-168.01: "Nuclear Data Improvements and Development of Tools – Nuclear Data Evaluation". Task 6.2: Thermal Scattering Libraries Processing. 2012-13.

State of the Art: Temperatures					
Isotope	Compound	ENDF/B-VII.1	INDL-TSL	JEFF 3.1.X	
Н	H2O	293.6, 350, 400, 450, 500, 550, 600, 650, 800	293.6, 323.6, 373.6, 423.6, 473.6, 523.6, 573.6, 623.6, 647.2, 800, 1000	293.6, 323.6, 373.6, 423.6, 473.6, 523.6, 573.6, 623.6, 647.2, 800, 1000	
Н	Para-H	20	14, 16, 20.38	-	
Н	Ortho-H	20	14, 16, 20.38	-	
Н	HZr	296, 400, 500, 600, 700, 800, 1000, 1200	293.6, 400, 500, 600, 700, 800, 1000, 1200	293.6, 400, 500, 600, 700, 800, 1000, 1200	
Н	CaH2	-	-	296, 400, 500, 600, 700, 800, 1000, 1200	
Н	TiH2	-	293.6, 400, 500, 600, 700, 800, 1000, 1200	-	
Н	YH2	-	293.6, 400, 500, 600, 700, 800, 1000, 1200	-	
Н	CeH2	-	293.6, 400, 500, 600, 700, 800, 1000, 1200	-	
D	D2O	293.6, 350, 400, 450, 500, 550, 600, 650	293.6, 323.6, 373.6, 423.6, 473.6, 523.6, 573.6, 643.9,	293.6, 323.6, 373.6, 423.6, 473.6, 523.6, 573.6, 643.9,	

INDUSTRIALES

Nuclear Energy Agency

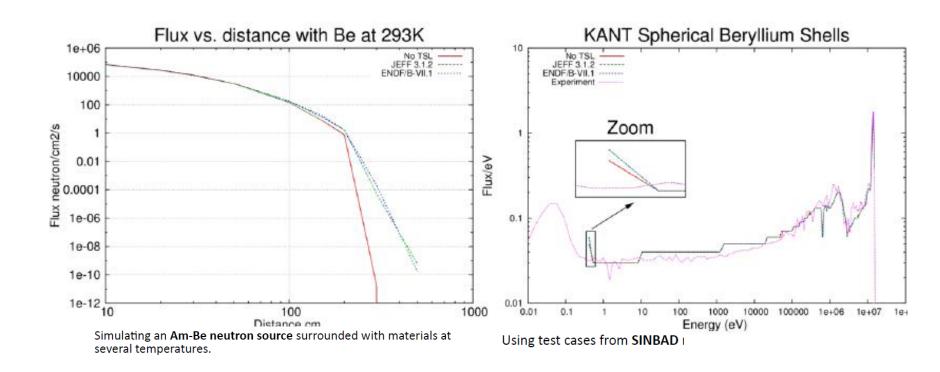
State of the Art: Temperatures

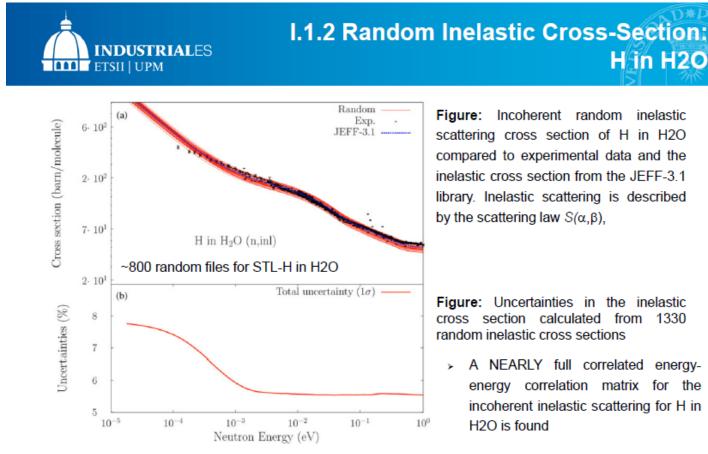

EIS				H H
Isotope	Compound	ENDF/B-VII.1	INDL-TSL	JEFF 3.1.X
D	Para-D	19	19, 23.65	-
D	Ortho-D	19	19, 23.65	-
Ве	Be metal	293.6, 350, 400, 450, 500, 550, 600, 650	-	293.6, 400, 500, 600, 700, 800, 1000, 1200
Be	BeO	293.6, 400, 500, 600, 700, 800, 1000, 1200	-	-
U	UO2	296, 400, 500, 600, 700, 800, 1000, 1200	-	-
С	Graphite	296, 400, 500, 600, 700, 800, 1000, 1200, 1600, 2000	293.6, 400, 500, 600, 700, 800, 1000, 1200, 1600, 2000, 3000	293.6, 400, 500, 600, 700, 800, 1000, 1200, 1600, 2000, 3000
н	I-CH4	100	-	-
Н	S-CH4	22	-	-
н	CH2	296, 350	-	293.6, 350

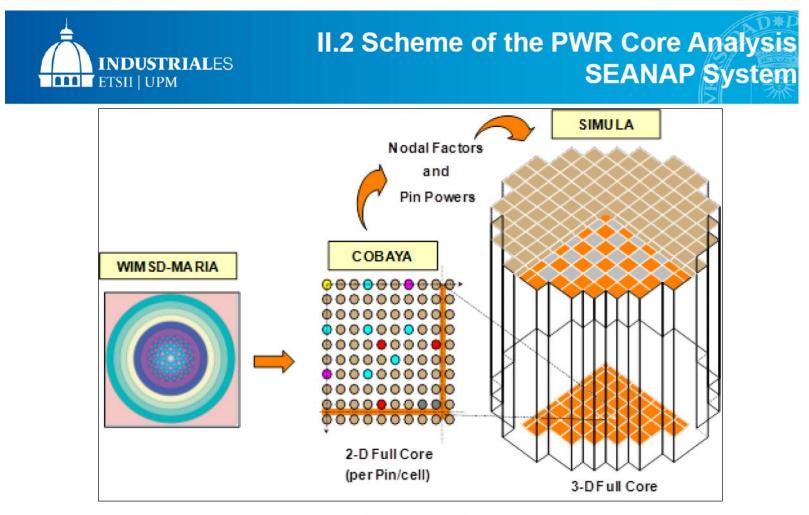
State of the Art: Temperatures

Sctructure of MCNP identifiers: MatTemp.Libt, where

Material in JEFF-3.1.2	MCNP Identifier	Library	Suffix
H(H2O)	lw00.32t	ENDF/B-VI.8	.68t
H(HZr)	hzr00.32t	ENDF/B-VII.0	.70t
D(D2O)	hw00.32t	ENDF/B-VII.1	.71t
Be	be00.32t	INDL-TSL	.20t
Graphite	gra00.32t	JEFF-3.1	.30t
CH2	poly00.32t	JEFF-3.1.1	.31t
Mg	mg00.32t	JEFF-3.1.2	.32t
H(CaH2)	hca00.32t	JENDL-4.0	.40t
Ca(CaH2)	cah00.32t	JENDL-4.0u	.41t

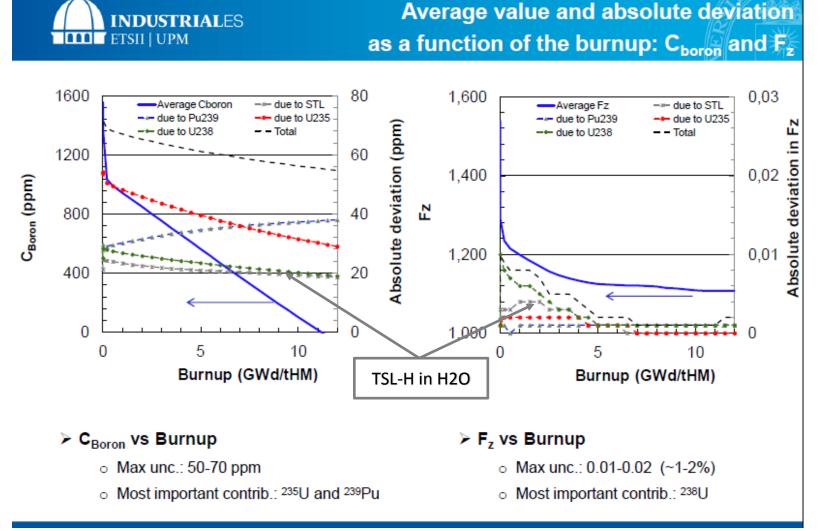

As a result, one ACE file containing the cross section is generated for all materials at all available temperatures. Also, one dir file is generated per ACE file, with information for the xsdir file.


Processed TSL: Validation


JEF/DOC-1524: "Propagation of U235-238, Pu239 and STL Nuclear Data Uncertainties for PWR core analysis", O. Cabellos. November 2013.

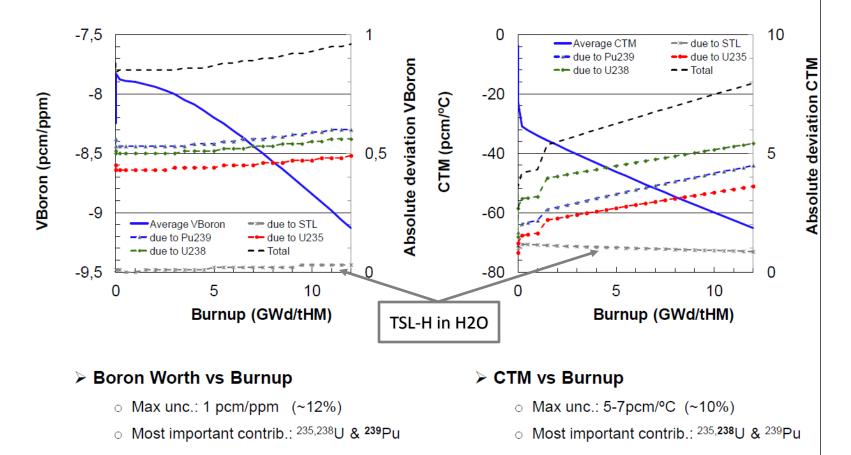
Ref. "Random Adjustment of the H in H2O Neutron Thermal Scattering Data", D. Rochman and A. J. Koning, NUCLEAR SCIENCE AND ENGINEERING: 172, 287–299 (2012)

SEANAP: WIMS-D4+COBAYA+SIMULA


III.1 PWR description

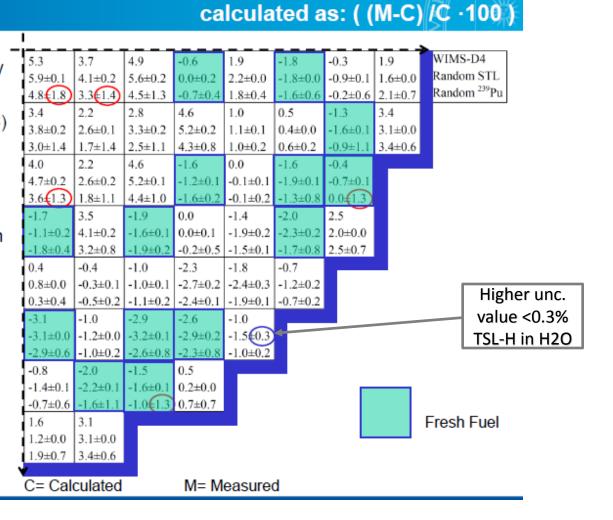
PWR (WESTINGHOUSE), 3 loops , 157	FA, power 2775. MWth	FUEL	TYPE	w/o(%)	WABAS
		1	L OFA	2.10	0
4 CORE		2	2 OFA	3.10	0
	·>	3	3 OFA	3.24	0
1 13 4 21 6 21 16 14		4	4 OFA	3.24	0
13 11 15 2 16 6 20 7		ş	5 OFA	3.24	0
4 15 3 21 8 22 19		(5 OFA	3.24	0
21 2 21 9 18 20 5			7 OFA	3.24	0
6 16 8 18 12 17		8	OFA	3.24	0
		9	OFA	3.24	0
21 6 22 20 17		10	OFA	3.24	0
16 20 19 10		11	L OFA	3.24	0
14 7		12	AEF	3.60	0
AVE. BURNUP PER FUEL ASSEMBLY		13	AEF	3.60	0
1 2 3 4 5	6 7 8	14	AEF	3.60	0
	.000 14.984 11.662	19	5 AEF	3.60	0
2 11.662 16.188 13.130 28.902 12.155 28 3 27.397 13.130 27.572 0.000 22.778 0	.866 0.000 30.191 .000 0.000	10	5 AEF	3.60	0
	.000 30.124	17	7 AEF	3.60	0
5 30.867 12.155 22.778 15.236 13.123 14	.882	18	AEF	3.60	0
6 0.000 28.866 0.000 0.000 14.882		19	AEF	3.60	0
7 14.984 0.000 0.000 30.503 8 11.662 30.191		20	AEF	3.60	4
		21	L AEF	3.60	8
		22		3.60	12
	L				

III.3 U&Q for Core Analysis:



III.3 U&Q for Core Analysis: Average value and absolute deviation as a function of the burnup: V_{Boron} and CTM

 Relative percentage assembly power core distribution between measured (M) and calculated (C)


INDUSTRIALES

at BOC-HFP and Xenon equilibrium

 Relative error in % for random cases (STL and ²³⁹Pu) is provided

Low unc. due to STLs < 0.3%

Max. unc. due to ²³⁹ Pu < 1.8%

III.3 U&Q for Core Measurments:

Relative percentage assembly power

III.3 U&Q for Core Analysis: Average value and absolute deviation as a function INDUSTRIALES of the burnup for control bank worth

	Average	Absolute standard deviation (ppm)					
	(ppm)	STL	²³⁹ Pu	²³⁵ U	²³⁸ U	Total	
D-IN	120.3	1.3	0.5	0.7	0.7	1.7	
C-IN	92.2	0.8	2.6	1.4	1.1	3.2	
B-IN	138.1	0.9	0.5	1.6	0.8	2.0	
A-IN	92.3	0.5	3.5	3.9	0.7	5.3	
SB-IN	88.9	1.1	3.3	2.4	1.4	4.5	
SA-IN	120.3	0.8	2.3	3.2	0.6	4.0	
D+C-IN	237.8	2.1	2.9	0.7	1.6	4.0	
D+C+B-IN	419.2	3.5	4.5	1.0	2.4	6.2	
D+C+B+A-IN	565.2	4.1	1.6	6.5	1.7	8.0	
D+C+B+A+SB-IN	701.8	5.6	2.8	3.9	2.9	7.9	
ARI	917.5	7.8	2.6	5.4	3.2	10.3	

Uncertainty for each of the nuclear data varied (STL-H in H2O, ≻ ^{235,238}U and ²³⁹Pu) and the sum of the different contributions < ~2%

Review of Recent International Activities

– Journals

- Models:
 - *Evaluation of the neutron scattering cross-section for light water by molecular dynamics*". Y. Abe et al., NIMA, 735(2014)568–573
 - "CAB models for water: A new evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format", J.I. Marquez Damian et al., ANE, 65 (2014) 280–289
- Uncertainties/Covariances:
 - "Generation of an S(α, β) Covariance Matrix by Monte Carlo Sampling of the Phonon Frequency Spectrum", J.C. Holmes and A.I. Hawari, NDS 118 (2014) 392–395
 - "Random Adjustment of the H in H2O Neutron Thermal Scattering Data", D. Rochman and A. J. Koning, NSE, 172, 287–299 (2012)
- Interpolation
 - "Comparison of thermal scattering processing options for S(a,b) cards in MCNP", Štefan C" erba et al., ANE, 55 (2013) 18–22
 - "On-the-fly sampling of temperature-dependent thermal neutron scattering data for Monte Carlo simulations", Andrew T. Pavlou, Wei Ji. ANE, 71 (2014) 411–426

- Meetings

- SG38, October 2014: "Thermal Scattering Law Data", D. Brown, W. W. Haeck
- SG40, November 2014: "On Improvement of Thermal Neutron Scattering Libraries (S(α, β) data) for H2O and D2O", D. Roubtsov et al.