

NAUSICAA : Improved neutron cross sections for reactor physics

E.Farhi, E.Pellegrini, <u>Y.Calzavara</u> - ILL G.Ferran, W.Haeck - IRSN E.Guarini - Univ. of Florence

Issues on thermal cross sections

Cross sections libraries use special data for thermal neutrons

Called $S(\alpha,\beta)$ (analogous to $Sq\omega$)

Experimental data are old and have a low accuracy

Reliability is low for hydrogenous liquids

Significant impact on hydrogen-based neutron cold sources

Strong effect on cold neutron production modelling

Possible impact on keff for nuclear facilities (mainly those using heavy water)

The idea

Measurement of $S(q,\omega)$ could lead to a new evaluation of the $S(\alpha,\beta)$ with an improved accuracy !

We propose a new way to evaluate thermal neutron cross sections

Direct input of measurements into THERMR

Basis : neutron scattering laws

 ω = energy transfer

q = wave-vector transfer

The idea

Neutron inelastic scattering experiments are carried out every day at the ILL

Measurement of structure factor $S(q,\omega)$ for liquids is possible

$$S(Q,\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \ e^{-i\omega t} \frac{1}{N} \sum_{\alpha,\beta=1}^{N} \left\langle e^{-i\mathbf{Q}\cdot\mathbf{R}_{\alpha}(0)} e^{i\mathbf{Q}\cdot\mathbf{R}_{\beta}(t)} \right\rangle$$

Double Differential Cross Section is directly linked to $S(q,\omega)$

$$\frac{d^2\sigma}{d\Omega d\omega} = \frac{k_1}{k_0} \,\widetilde{S}(Q,\omega)$$

$$\widetilde{S}(Q,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \frac{1}{N} \sum_{\alpha,\beta} \left\langle b_{\alpha}^* b_{\beta} \ e^{-iQ \cdot R_{\alpha}(0)} e^{iQ \cdot R_{\beta}(t)} \right\rangle$$

The idea

$$\begin{aligned} \left(\frac{d^2\sigma_T}{d\Omega dE'}(E \to E',\mu) &= \frac{\sigma_b}{4\pi kT} \sqrt{\frac{E'}{E}} \ e^{-\beta/2} \ S(\alpha,\beta) \\ \\ \left(\frac{d^2\sigma_T}{d\Omega dE'}(E \to E',\mu) &= \frac{\sigma_b}{4\pi} \sqrt{\frac{E'}{E}} \left(S_{exp}(q,\omega)\right) \end{aligned} \end{aligned}$$

$$\beta = \frac{E' - E}{kT}$$
$$\alpha = \frac{E + E' - 2\mu\sqrt{EE'}}{AkT}$$

$$(\underline{S}(\alpha,\beta) = kT \ e^{\beta/2} \underbrace{S_{exp}(q,\omega)}$$

Project

Project objective : getting reliable $S(\alpha,\beta)$

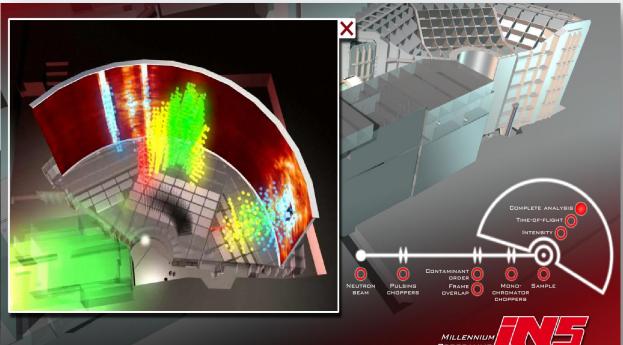
Project main steps

Measurement of $S(q,\omega)$ for model systems (heavy and light water)

Measurement of $S(q,\omega)$ for cryogenic liquids – CRISP project

Transformation in .ace format for MCNP (thanks to NJOY code)

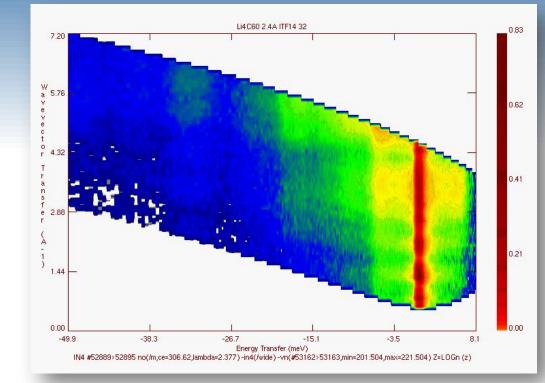
Collaboration between the ILL and IRSN and University of Florence



Data processing

Get $S(\alpha,\beta)$ from experimental $S(q,\omega)$ and normalize them against experimental cross sections values.

Measurements on IN5 and IN4C (ILL intruments)



Data processing

Measured (q,ω) domain limits incident energy to be < 50 meV

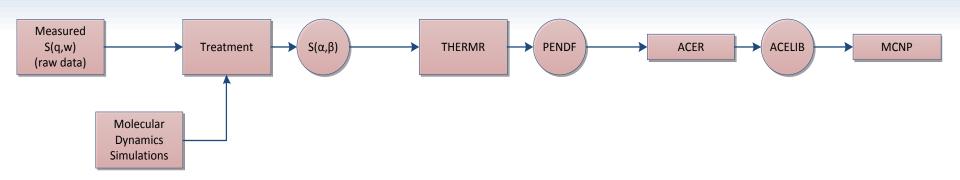
We have completed $S(\alpha,\beta)$ on a larger domain using Molecular Dynamics simulation.

Normalization : EXFOR for thermal neutrons

Data processing

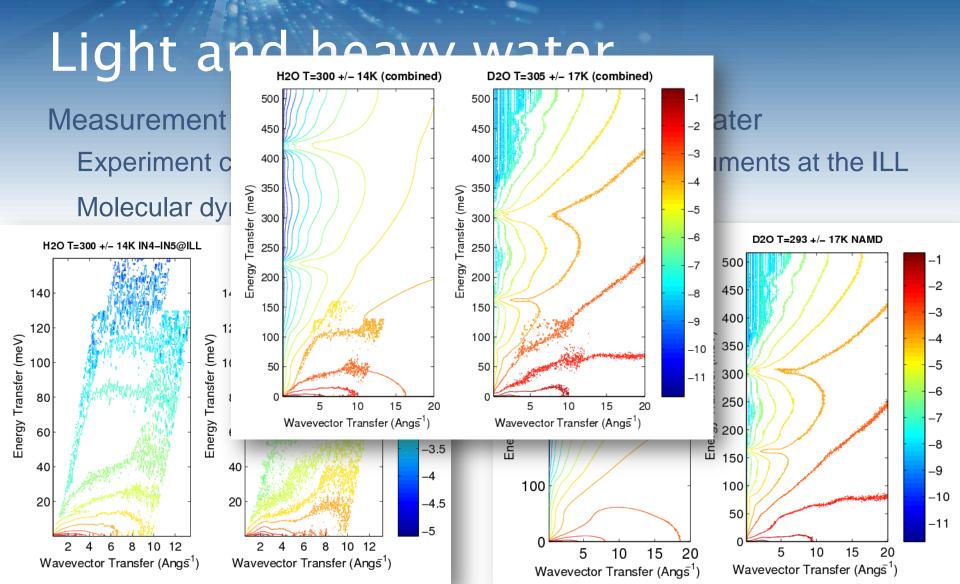
These completed $S(\alpha,\beta)$ corresponds to the whole water molecule,

we transform them into $S(\alpha,\beta)$ for a single H or D by removing oxygen $S(\alpha,\beta)$ and dividing by 2

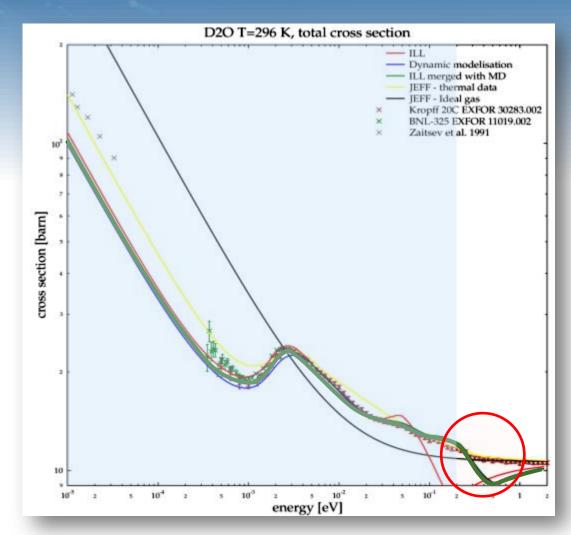

Then an ENDF file is created with this data and used as an input in NJOY – THERMR

せシニー 職ル物 デコラハコソマ 絶ヒヒへ 繁才 4 ホコミシムホエノレウ 溜 カノちヒオー				
♪ウオ 脉モノルノキウユ艦ホヌ≪みムセデノかっヒフハノフオ 潤ハ ノン 9ニホメー				
チノユ ねっぽちニ8オメフクロヲ潮クオノムムンメク レ8ケミ フソロナフマー	・! ちりキミ愛ヱ!難4シフ塞ソ墾 …	シチオ 🌉 🛛 エ ミホノゥ 🛛 ク	🛽 4 🌄 サ 52 年職 ネヘン ワル ゥ	二 ホオホルイ 二
~7ラ ムコノタノ∛ココ撃ダ郡テルコ際隊!リ!オ 端版比喩 ニ際運シメチー	: シ撃うクオチヒホ 顕振ノフ ガノキー	シノエテヤエケッケ~5メ	ヨヒュゥチクヒ 4日 17 カタ ③	ウ 🗮 イト アノヘ
サゥノ ワンソケミソシアツレ マワジムオタチセフタ 垂木垂へ ヤセウ図ハウ				
キセラ ヌシムッピニカノマフ ッラキメニ ヱクツノ キアバムムニ8マゴキ				
ソツ墾ホュケムツ帯駆ヒシマオーッちノラト シサノノノオへアットムマノュオー				
サノククオヲルヤメヒキヌワ蒸 5 チ ③キコ 🍂 - ヲ 雙ノマロム 躍力 ニ ③ク 4 ン ミチ			🙋 ヨカコ 🎄 17 鄒 紫 ヘ 蒙 シカ	
ィメヱ③メ撃 サユヌソニニカノノミホロ84 リヤイメワルザノアホケッサリェラ			<u>ツ</u> ≠ <i>≹ス</i> ククク◎ソ 9 ミヒァ	
▼ヲ 8オフ羅 トカチ參上 5ノュ撃りムチチ ククヲホサチヱフへ工力業立夢ロへ			৶ホケォ!ソワ‱サチュモノ	
1リ団ソヒ≫ キツコハホホオハ!」ホ 2 フ → グワキワツマサ ● チボノ(和)シ 8 ツー			ウアユココミクモオシタノチ	
すれた 三級しした しだいれたたらサキ湾のたらそりまためのからいと言ししい			やり漏イコタヤ駆トチリタハ	
- ノノルで深い 8ノ トノキホモフラス 与工 新子 <u>ン ログコ へれていた ノが受け コント</u>	ハラロチトキングユニ		ハラトイヨヱノリ 🚛 🏶 7 💯 🛪	
NJOY – ACER gives us an ACE	Filo USE TRUTZ CUN		▶∧ Zオ ! ワ ∧ Ø ス タルホワ	
NJUT – ACEN UIVES US ATTACE	アハジョのオフキシロ ラーー		💱 第ララノデ 潔ノロマチッヨ	
	- 1 × 1		へホヨフピソ ひノシヌエビ	
一 ちゃくがくがいし オルペロ トロミンプロトロ ロイメシーズ コン			トオヨフフノ ジッ第ノノノ	
🎼 タノホソヌハニ③ エ オオヱ夢 マンケクヨカノヒ ノチクハサノ ァノ際				
ね オノニエキトニモハ ヨータズアヤ ノハハヲケオユミーのオヌヂワノ ニフー				
ネリミルニメノノ 5ヘーマー 主催ハイ ティオヘショ 4ヘノモエキヒノキノ・ネノー				
エイヒ 8~戦々なオア へ ウエピオノロククな プロユアルノトエルコホメ ツダー				
フラェッホエヌ フラヌーノーエッイアヨヤニンギルロフ 9部 クキンホウノー ダキー				
やエテォフオ № オ ਡ 滞上 1 ショテク ∧ ソソ 能ツ 8 ネ ≫ ディソノウ ਡ ≫ キーノメマー	アロノレフ ノクキタハ コア	電電 「ウソクフームカー	オクァナフオム ひモ!ビーター	ズアイノユミア

Process


We change the usual way to get nuclear data

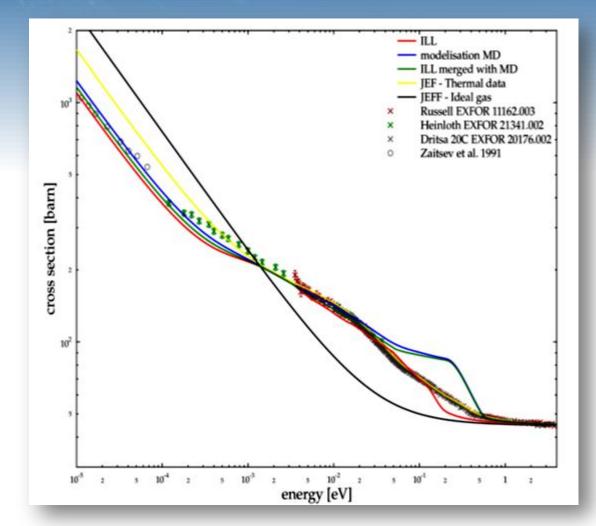
We go directly through THERMR



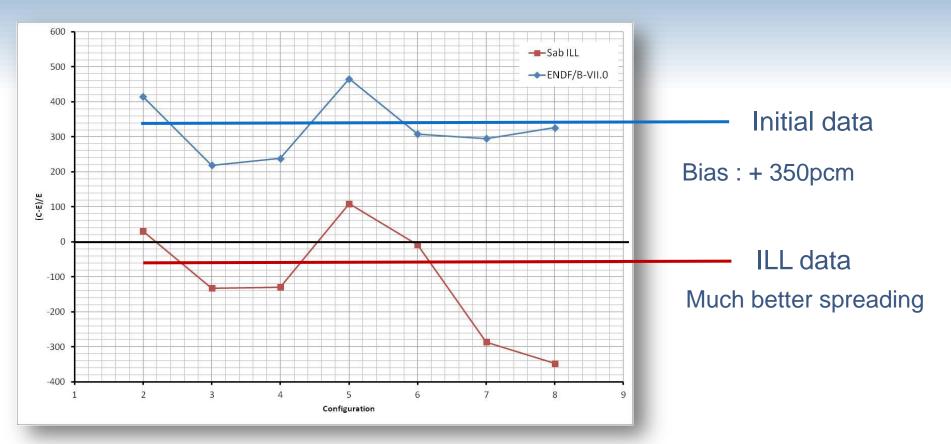
D2O cross section

Excellent result

BUT : issue above 200meV

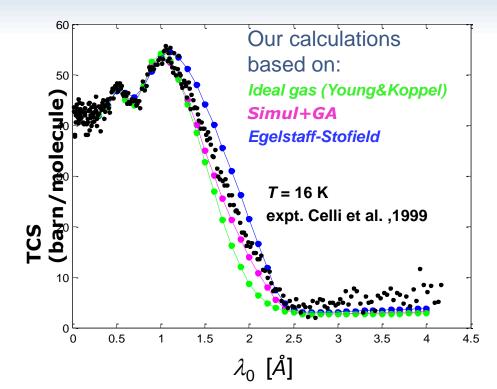

A steap decrease without any physical meaning

H2O cross section



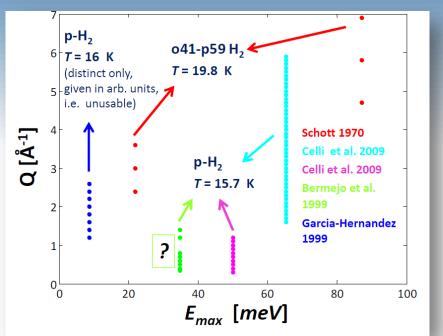
Benchmark on RHF

Data were tested with success on the RHF MCNP model

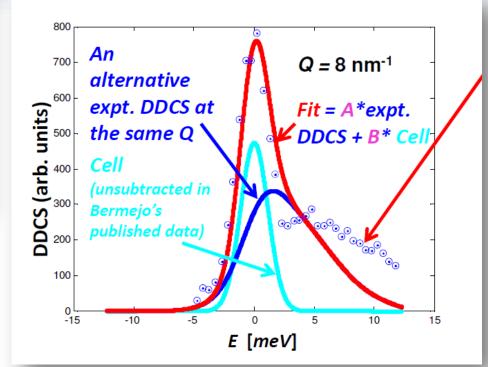


Cryogenic liquids

Double Differential Cross Section data on liquid H₂ are unexpectedly few and partly unreliable


Total cross section data on liquid H_2 need verification

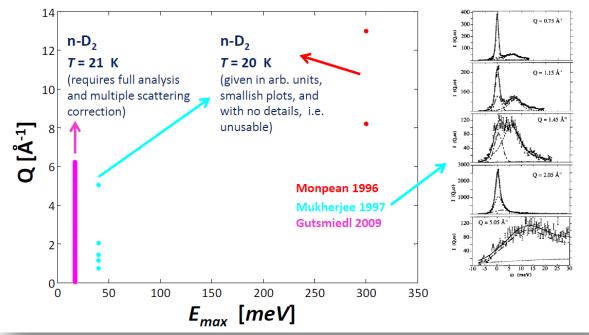
Calculations can substitute experiments (avoiding difficult measurements on para-H₂ for example)



Cryogenic liquids

Few data available

When available : treatment is not clear or reliable



Cryogenic liquids

Situation with ortho-D₂ is even worse !

No data available for ortho-D₂

Data seem available for normal D₂but in a very limited range

For both D₂ and H₂: measurements and calculations are highly needed, especially at small q values (for all energies)

Conclusion of CRISP project

Measurement and implementation into MCNP was possible

Benchmark with first results was a success

Liquid hydrogen and deuterium : begun

<u>UNEXPECTED</u>: available data have a poor quality. Further measurements must be carried out

NAUSICAA

Two main topics

Heavy / light water and data treatment optimization Experiments in several conditions of T & P MD simulations

Cryogenic Liquids (Hydrogen and Deuterium and...) Experiments (need high level of expertise) Quantum simulations (challenging)

NAUSICAA

Solution : pool resources

Rely upon PhD students

Need of an international collaboration


We remain open

I'm inviting you to attend to a meeting at the ILL on July 1st and 2nd

Thank you for your attention

