

Propagation of ^{235,238}U and ²³⁹Pu and STL (H in H₂O) Nuclear Data Uncertainties for PWR Core Analysis

An uncertainty propagation methodology based on Monte Carlo method is applied to PWR nuclear design analysis to assess the impact of nuclear data uncertainties in ^{235,238}U, ²³⁹Pu and Scattering Thermal Library for Hydrogen in water.

This uncertainty analysis is compared with the design and acceptance criteria to assure the adequacy of bounding estimates in safety margins.

O. Cabellos, E. Castro, C. Ahnert and C. Holgado Department of Nuclear Engineering, Universidad Politécnica de Madrid, Spain E-mail: <u>oscar.cabellos@upm.es</u>

PART I. Uncertainty in Nuclear Data: TENDL2012 Random Files

I.1 STLs

- I.1.1 Current Uncertainty Data in Elastic Cross-Section for H in H2O
- I.1.2 Random Inelastic Cross-Section: H-H2O ("Petten" Methodology)
- I.2. ^{235,238}U and ²³⁹Pu TENDL2012

PART II. SEANAP System

- II.1 Introduction to SEANAP
- II.2 Scheme of the PWR Core Analysis SEANAP System
- II.3 Validation of SEANAP System

PART III. STLs Uncertainty Propagation in a PWR

III.1 Random STL processing with SEANAP SystemIII.2 PWR Core AnalysisIII.3 Uncertainty & Quantification

Summary and conclusions

PART I. Random STLs

PART I. Uncertainty in Nuclear Data: TENDL2012 Random Files

I.1 STLs

I.1.1 Current Uncertainty Data in Elastic Cross-Section for H in H2O

- I.1.2 Random Inelastic Cross-Section: H-H2O ("Petten" Methodology)
- I.2. ^{235,238}U and ²³⁹Pu TENDL2012

PART II. SEANAP System

- II.1 Introduction to SEANAP
- II.2 Scheme of the PWR Core Analysis SEANAP System
- II.3 Validation of SEANAP System

PART III. STLs Uncertainty Propagation in a PWR

- III.1 Random STL processing with SEANAP System
- III.2 PWR Core Analysis
- III.3 Uncertainty & Quantification

Summary and conclusions

I.1.1 Comparison of Elastic Cross Section: H (free gas model) versus H-in-H2O

I.1.1 ENDF Uncertainties: Elastic Cross Section (MT2) for Hydrogen

I.1.1 SCALE6.1/UN Correlation Matrix for Elastic Cross Section of Hydrogen (H)

Processing SCALE6.1/UN into ERRROR/BOXER format:

- ANGELO code to convert COVERX into ERRORR
- LAMDA to check covariance properties
- NJOY to process in BOXER format and to visualize with VIEWR

I.1.2 Random Inelastic Cross-Section: H in H2O

Figure: Incoherent random inelastic scattering cross section of H in H2O compared to experimental data and the inelastic cross section from the JEFF-3.1 library. Inelastic scattering is described by the scattering law $S(\alpha,\beta)$,

Figure: Uncertainties in the inelastic cross section calculated from 1330 random inelastic cross sections

 A NEARLY full correlated energyenergy correlation matrix for the incoherent inelastic scattering for H in H2O is found

Ref. "Random Adjustment of the H in H2O Neutron Thermal Scattering Data", D. Rochman and A. J. Koning, NUCLEAR SCIENCE AND ENGINEERING: **172**, 287–299 (2012)

I.2 TENDL 2012 randoms: U235, U238 and Pu239

- First 50 TENDL2012 random files processed with NJOY/GROUPR in 69 energy groups at 293K with infinite dilution
- Random files: ~740 for ²³⁵U, ~700 for ²³⁸U and ~740 for ²³⁹Pu

Relative standard deviation based on TENDL2012 random files

The most important contributors in criticality calculations: ²³⁹Pu(nu-bar), ²³⁸U(n,γ), ²³⁸U(n,n'), ²³⁹Pu(n,fission) and ²³⁵U(nu-bar) at 30 GWd/MTU


```
➢ <sup>238</sup>U(n,n'): < 6%</p>
```

➤ ²³⁹Pu(nu-bar) and ²³⁵U(nu-bar): ~ 0.3-0.2%

Relative standard deviation based on TENDL2012 random files

> Large uncertainty around 10 eV for 235 U(n,fission) and 235 U(n, γ)

> 239 Pu(n,g) at E> 5 keV the uncertainty remains high ~16%

However, large discrepancies of these uncertainties are found when comparing with current uncertainty nuclear data libraries, such as **SCALE6/UN**

PART II. SEANAP System

PART I. Uncertainty in Nuclear Data: TENDL2012 Random Files

I.1 STLs

I.1.1 Current Uncertainty Data in Elastic Cross-Section for H in H2O

- I.1.2 Random Inelastic Cross-Section: H-H2O ("Petten" Methodology)
- I.2. ^{235,238}U and ²³⁹Pu TENDL2012

PART II. SEANAP System

- II.1 Introduction to SEANAP
- II.2 Scheme of the PWR Core Analysis SEANAP System
- II.3 Validation of SEANAP System

PART III. STLs Uncertainty Propagation in a PWR

III.1 Random STL processing with SEANAP System

- III.2 PWR Core Analysis
- III.3 Uncertainty & Quantification

Summary and conclusions

SEANAP = Sistema Español de Análisis de Núcleos de Agua a Presión

SEANAP system has been developed and applied for 3D PWR core analysis during near thirty years, as a close collaboration among the Polytechnical University of Madrid group of developers (J. M. Aragonés et al.) and the engineering groups of users at the several Spanish PWR units.

SEANAP is a mature, demonstrated, complete and integrated system of computer codes and procedures that provide full and independent PWR core analysis capabilities.

Integrated /coupled codes in SEANAP:

MARPIJ, COBAYA, DELFOS, SIMULA, SIMTRAN, COBRA, RELAP-5

> SEANAP Applications:

- Fuel Loading Pattern Evaluations
- On line 3D Simulations

- Nuclear Design Analysis
- Planning of Optimal Operational Maneuvers
- Dynamic Core Analysis for Safety and Training Simulations

Reference: "Continuous Validation and Development for Extended Applications of the SEANAP Integrated 3D PWR Core Analysis System", C. Ahnert, J.M. Aragonés, O. Cabellos & N. García-Herranz, M&C99 (1999)

II.2 Scheme of the PWR Core Analysis SEANAP System

Figure 6. Scheme of the PWR Core Analysis System SEANAP-86

Ref.: "Validation of PWR Core Analysis system SEANAP-86 with measurements in test and operation", C. Ahnert et al., M&C87

SEANAP is integrated by 4 subsystems:

- **1.MARIA** system for assembly calculations
- 2. COBAYA system for a detailed (pinby-pin) core calculations at reference conditions
- **3. SIMULA** system for 3D 1 group corrected-nodal core simulation
- **4. CICLON** system for fuel management analysis of reload cycles

II.2 Scheme of the PWR Core Analysis SEANAP System

SEANAP: WIMS-D4+COBAYA+SIMULA

- SEANAP system has been applied in the last 30 years for 7 Spanish PWR units (Almaraz I and II, Ascó I and II, Trillo, Vandellós II and Zorita):
 - Fuel loading pattern optimization carried out for about 75 cycles with very positive results
 - Full capability of the nuclear design for each cycle
 - Start-up physic test at HZP: critical end-point boron concentration, isothermal temperature coefficients, control bank worths, differential boron worth and power distribution
 - Nominal operation: boron concentration, in-core flux maps

- SEANAP system has been developed and implemented as an online simulator ~20 cycles of three PWRs (Vandellós-II, Ascó-I and Ascó-II)
 - Every 5 minutes, continuos operational surveillance: boron concentration, reaction rates at the excore detectors, A.O., fluid temperatures at the location of thermocouples, temperatures at the hot legs...
 - **Every month** incore flux maps: Incore/excore calibrations
 - Planning of Optimal Maneuvers, Dynamic Core Analysis for safety and training for plant engineers and operators.

PART III. Uncertainty Propagation in a PWR

PART I. Uncertainty in Nuclear Data: TENDL2012 Random Files

I.1 STLs

I.1.1 Current Uncertainty Data in Elastic Cross-Section for H in H2O

- I.1.2 Random Inelastic Cross-Section: H-H2O ("Petten" Methodology)
- I.2. ^{235,238}U and ²³⁹Pu TENDL2012

PART II. SEANAP System

- II.1 Introduction to SEANAP
- II.2 Scheme of the PWR Core Analysis SEANAP System
- II.3 Validation of SEANAP System

PART III. STLs Uncertainty Propagation in a PWR

III.1 Random STL processing with SEANAP SystemIII.2 PWR Core AnalysisIII.3 Uncertainty & Quantification

Summary and conclusions

III.1 PWR description

PWF	R (WE	ES	ΓIN	Gŀ	101	US	E),	3 le	oor	os, 1	57	′ FA,	р	owe	r 2	2775. N	MWth	FUEL	ΤY	PE	w/o(%)	WABAS	
										•				•						1	OFA	2.10	0	
ļ	4 (COF	RΕ																	2	OFA	3.10	0	
														≽						3	OFA	3.24	0	
	ł	1	13	4	21	6	21	16	14											4	OFA	3.24	0	
	i	13	11	15	2	16	6	20	7											5	OFA	3.24	0	
		4	15	3	21	8	22	19												6	OFA	3.24	0	
	i		2	21		10	20	5												7	OFA	3.24	0	
	-	21	2	21	9	18	20	3	l											8	OFA	3.24	0	
	ł	6	16	8	18	12	17													9	OFA	3.24	0	
	Ì	21	6	22	20	17													1	0	OFA	3.24	0	
		16	20	19	10		-												1	1	OFA	3.24	0	
	i V	14	7		Į	l													1	2	AEF	3.60	0	
] 				,											1	3	AEF	3.60	0	
AVE. BU	JRN	10P 1	PER	C FU	е ц. 2	ASS	<u>емв</u> . З	ГΪ	4		5		6		7		8		1	4	AEF	3.60	0	
1	1	.8.1	37	11.	662	27	.39	7	0.00)0 3	30.867		0.000	14	4.984	1 1	1.662		1	5	AEF	3.60	0	
2	1	1.6	62	16.	188	13	.13	0 2	8.90)2 1	2.155	2	8.866	. (0.000) 3	0.191		-	6	2 F F	3 60	0	
3	2	27.3	97	13.	130	27	.57	2	0.00)0 2	2.778	}	0.000		0.000)			1	7	ADT	2.00	0	
4	2	0.0	00	28.	902	0	.00	03	0.75	51	.5.236)	0.000	30).124	ł			Ţ	/	AEF.	3.60	0	
5	3	0.8	0/	12.	100	22	. / /	0 I 0	5.23 0 00)0 1	.3.123 1 000) ,	4.882						1	8	AEF	3.60	0	
0 7	1	0.0 4 9	84	20. N	000	0	00.	0 ר ז	0.00	י ט ד וא	4.002								1	9	AEF	3.60	0	
, 8	1	1.6	62	30.	191	Ū		• 0											2	0	AEF	3.60	4	
																			2	1	AEF	3.60	8	
																			2	2	AEF	3.60	12	

III.1 PWR description

PWR (WESTINGHOUSE), 3 loops, 157 FA, power 2775. MWth																					
	4 CODE											1 0	FA	2.10	0						
ļ	4 C	OR	E														2 0	FA	3.10	0	
									<u> </u>				->				3 0	FA	3.24	0	
				С				D									4 0	FA	3.24	0	
			SB				SA				١٥	cation	of				5 0	FA	3.24	0	
	ļ	С		D		B		Δ				oution		_			6 0	FA	3.24	0	
	ił	C		D	aD	D		11			CO	ntrol r	od ba	anks			7 0	FA	3.24	0	
	ļ				2B												8 O	FA	3.24	0	
	i			В		С											9 0	FA	3.24	0	
	i		SA													1	0 0	FA	3.24	0	
		D		Α			•									1	1 0	FA	3.24	0	
	Ŵ					L										1	2 A	EF	3.60	0	
	ן י 															1	3 A	EF	3.60	0	
AVE. BU	JRN	JP 1 1	PER	FU.	ЕЦ . 2	ASS.	ЕМВ २	ΓX	4		5	6		7	8	- 1	4 A	 न.न	3.60	0	
1	1:	3.1:	37	11.	662	27	.39	7	0.0)0 30.	867	0.00	0 14.	, 984 11	1.662	- 1	 5 д	 हह	3 60	0	
2	1	1.6	52	16.	188	13	.13	0 2	28.90)2 12.	155	28.86	6 0 .	000 30	0.191	- 1	6 7	 	3 60	0	
3	2	7.3	97	13.	130	27	.57	2	0.0	10 22.	778	0.00	0 0.	104		1	0 <u>л</u> 7 л	Dr Dr	3.00	0	
4	31		50 67	28. 12	902 155	22	.00	U : 8 1	50.73 5-21)5 15. 36 13	236 123	14 88	U 30. 2	124		1		er ee	3.00	0	
6		0.0	00	28.	866	0	.00	0	0.0)0 14.	882	11.00	2			Ţ	8 A	EF.	3.60	0	
7	14	4.98	34	0.	000	0	.00	0 3	80.50)3						1	9 A	F, F,	3.60	0	
8	1:	1.6	52	30.	191											2	0 A	ΕF	3.60	4	
																2	1 A	ΕF	3.60	8	
																2	2 A	ΕF	3.60	12	

III.2 Methodology: TMC with SEANAP System

Scheme of TMC for random nuclear data analysis:

- TENDL2012 random file completely different from another one is processed with NJOY
- WIMSR/NJOY is needed to process this file in WIMSD format, and WILLIE program updates the WIMS-D4 library with the processed random file.
- This random WIMSD library includes a unique new material remaining the same for the rest of the library.
- MARIA sub-system is run for the 40 FA types generating the two-group crosssection and additional data for COBAYA and SIMULA codes.

Reactivity at BOC, HFP and C_B=1348 ppm

	Fuel	# Burnup	Enrichment	Burnup	Average		Δ	k∕k% c	lue to	
#	Assembly	absorbers/ Control Rods	(w/o)	at BOC (GWD/TMU)	Kinf	STL	²³⁹ Pu	²³⁵ U	²³⁸ U	TOTAL
1	OFA	-	2.1	18147	0.91360	0.18	0.50	0.37	0.28	0.70
2	OFA	-	3.1	28827	0.89790	0.27	0.52	0.29	0.27	0.70
3	OFA	-	3.24	27054	0.93579	0.26	0.46	0.31	0.27	0.67
4	OFA	-	3.24	27519	0.96487	0.24	0.42	0.34	0.26	0.65
5	OFA	-	3.24	29887	0.96398	0.25	0.44	0.34	0.26	0.66
6	OFA	-	3.24	29340	0.96465	0.25	0.43	0.33	0.26	0.66
7	OFA	-	3.24	30232	0.96227	0.26	0.45	0.32	0.26	0.66
8	OFA	-	3.24	22908	0.98784	0.25	0.40	0.35	0.26	0.65
9	OFA	-	3.24	30456	0.94295	0.27	0.47	0.30	0.26	0.67
10	OFA	-	3.24	30053	0.96551	0.26	0.44	0.32	0.26	0.66
11	OFA	-	3.24	16273	1.09368	0.15	0.23	0.49	0.26	0.62
12	AEF	-	3.6	13050	1.13885	0.14	0.16	0.50	0.28	0.61
13	AEF	-	3.6	11577	1.14386	0.14	0.15	0.51	0.28	0.61
14	AEF	-	3.6	11695	1.12998	0.16	0.18	0.48	0.28	0.61
15	AEF	-	3.6	13263	1.13845	0.15	0.17	0.49	0.28	0.61
16	AEF	-	3.6	13285	1.13486	0.15	0.18	0.48	0.28	0.60
17	AEF	-	3.6	15024	1.11838	0.18	0.22	0.45	0.28	0.60
18	AEF	-	3.6	15233	1.12937	0.16	0.19	0.47	0.28	0.60
19	AEF	-	3.6	0	1.21566	0.09	0.00	0.63	0.27	0.69
20	AEF	4 WABAS	3.6	0	1.18455	0.12	0.00	0.64	0.27	0.71
21	AEF	8 WABAS	3.6	0	1.15216	0.15	0.00	0.65	0.27	0.72
22	AEF	12 WABAS	3.6	0	1.12014	0.18	0.00	0.66	0.27	0.73

Reactivity at BOC, HFP and C_B=1348 ppm

	Fuel	# Burnup	Enrichment	Burnup	Average		Δ	k/k% c	lue to	
#	Assembly	absorbers/ Control Rods	(w/o)	at BOC (GWD/TMU)	Kinf	STL	²³⁹ Pu	²³⁵ U	²³⁸ U	TOTAL
1	OFA	-	2.1	18147	0.91360	0.18	0.50	0.37	0.28	0.70
2	OFA	-	3.1	28827	0.89790	0.27	0.52	0.29	0.27	0.70
3	OFA	-	3.24	27054	0.93579	0.26	0.46	0.31	0.27	0.67
4	OFA	-	3.24	27519	0.96487	0.24	0.42	0.34	0.26	0.65
5	OFA	-	3.24	29887	0.96398	0.25	0.44	0.34	0.26	0.66
6	OFA	-	3.24	29340	0.96465	0.25	0.43	0.33	0.26	0.66
7	OFA	-	3.24	30232	0.96227	0.26	0.45	0.32	0.26	0.66
8	OFA	-	3.24	22908	0.98784	0.25	0.40	0.35	0.26	0.65
9	OFA	-	3.24	30456	0.94295	0.27	0.47	0.30	0.26	0.67
10	OFA	-	3.24	30053	0.96551	0.26	0.44	0.32	0.26	0.66
11	OFA	-	3.24	16273	1.09368	0.15	0.23	0.49	0.26	0.62
12	AEF	-	3.6	13050	1.13885	0.14	0.16	0.50	0.28	0.61
13	AEF	-	3.6	11577	1.14386	0.14	0.15	0.51	0.28	0.61
14	AEF	-	3.6	11695	1.12998	0.16	0.18	0.48	0.28	0.61
15	AEF	-	3.6	13263	1.13845	0.15	0.17	0.49	0.28	0.61
16	AEF	-	3.6	13285	1.13486	0.15	0.18	0.48	0.28	0.60
17	AEF	-	3.6	15024	1.11838	0.18	0.22	0.45	0.28	0.60
18	AEF	-	3.6	15233	1.12937	0.16	0.19	0.47	0.28	0.60
19	AEF	-	3.6	0	1.21566	0.09	0.00	0.63	0.27	0.69
20	AEF	4 WABAS	3.6	0	1.18455	0.12	0.00	0.64	0.27	0.71
21	AEF	8 WABAS	3.6	0	1.15216	0.15	0.00	0.65	0.27	0.72
22	AEF	12 WABAS	3.6	0	1.12014	0.18	0.00	0.66	0.27	0.73

Reactivity at BOC, HFP and C_B=1348 ppm

	Fuel	# Burnup	Enrichment	Burnup	Average		Δ	k/k% c	lue to	
#	Assembly	absorbers/ Control Rods	(w/o)	at BOC (GWD/TMU)	Kinf	STL	²³⁹ Pu	²³⁵ U	²³⁸ U	TOTAL
1	OFA	-	2.1	18147	0.91360	0.18	0.50	0.37	0.28	0.70
2	OFA	-	3.1	28827	0.89790	0.27	0.52	0.29	0.27	0.70
3	OFA	-	3.24	27054	0.93579	0.26	0.46	0.31	0.27	0.67
4	OFA	-	3.24	27519	0.96487	0.24	0.42	0.34	0.26	0.65
5	OFA	-	3.24	29887	0.96398	0.25	0.44	0.34	0.26	0.66
6	OFA	-	3.24	29340	0.96465	0.25	0.43	0.33	0.26	0.66
7	OFA	-	3.24	30232	0.96227	0.26	0.45	0.32	0.26	0.66
8	OFA	-	3.24	22908	0.98784	0.25	0.40	0.35	0.26	0.65
9	OFA	-	3.24	30456	0.94295	0.27	0.47	0.30	0.26	0.67
10	OFA	-	3.24	30053	0.96551	0.26	0.44	0.32	0.26	0.66
11	OFA	-	3.24	16273	1.09368	0.15	0.23	0.49	0.26	0.62
12	AEF	-	3.6	13050	1.13885	0.14	0.16	0.50	0.28	0.61
13	AEF	-	3.6	11577	1.14386	0.14	0.15	0.51	0.28	0.61
14	AEF	-	3.6	11695	1.12998	0.16	0.18	0.48	0.28	0.61
15	AEF	-	3.6	13263	1.13845	0.15	0.17	0.49	0.28	0.61
16	AEF	-	3.6	13285	1.13486	0.15	0.18	0.48	0.28	0.60
17	AEF	-	3.6	15024	1.11838	0.18	0.22	0.45	0.28	0.60
18	AEF	-	3.6	15233	1.12937	0.16	0.19	0.47	0.28	0.60
19	AEF	-	3.6	0	1.21566	0.09	0.00	0.63	0.27	0.69
20	AEF	4 WABAS	3.6	0	1.18455	0.12	0.00	0.64	0.27	0.71
21	AEF	8 WABAS	3.6	0	1.15216	0.15	0.00	0.65	0.27	0.72
22	AEF	12 WABAS	3.6	0	1.12014	0.18	0.00	0.66	0.27	0.73

JEFF Meeting – Paris (France), November 25-28, 2013

> Uncertainty due ²³⁸U ~27% at different Burnup 23

Reactivity at BOC, HFP and C_B=1348 ppm

	Fuel	# Burnup	Enrichmont	Burnup	Avorago		Δ	k∕k% c	lue to:	
#	Assembly	absorbers/ Control Rods	(w/o)	at BOC (GWD/TMU)	Kinf	STL	²³⁹ Pu	²³⁵ U	²³⁸ U	TOTAL
1	OFA	-	2.1	18147	0.91360	0.18	0.50	0.37	0.28	0.70
2	OFA	-	3.1	28827	0.89790	0.27	0.52	0.29	0.27	0.70
3	OFA	-	3.24	27054	0.93579	0.26	0.46	0.31	0.27	0.67
4	OFA	-	3.24	27519	0.96487	0.24	0.42	0.34	0.26	0.65
5	OFA	-	3.24	29887	0.96398	0.25	0.44	0.34	0.26	0.66
6	OFA	-	3.24	29340	0.96465	0.25	0.43	0.33	0.26	0.66
7	OFA	-	3.24	30232	0.96227	0.26	0.45	0.32	0.26	0.66
8	OFA	-	3.24	22908	0.98784	0.25	0.40	0.35	0.26	0.65
9	OFA	-	3.24	30456	0.94295	0.27	0.47	0.30	0.26	0.67
10	OFA	-	3.24	30053	0.96551	0.26	0.44	0.32	0.26	0.66
11	OFA	-	3.24	16273	1.09368	0.15	0.23	0.49	0.26	0.62
12	AEF	-	3.6	13050	1.13885	0.14	0.16	0.50	0.28	0.61
13	AEF	-	3.6	11577	1.14386	0.14	0.15	0.51	0.28	0.61
14	AEF	-	3.6	11695	1.12998	0.16	0.18	0.48	0.28	0.61
15	AEF	-	3.6	13263	1.13845	0.15	0.17	0.49	0.28	0.61
16	AEF	-	3.6	13285	1.13486	0.15	0.18	0.48	0.28	0.60
17	AEF	-	3.6	15024	1.11838	0.18	0.22	0.45	0.28	0.60
18	AEF	-	3.6	15233	1.12937	0.16	0.19	0.47	0.28	0.60
19	AEF	-	3.6	0	1.21566	0.09	0.00	0.63	0.27	0.69
20	AEF	4 WABAS	3.6	0	1.18455	0.12	0.00	0.64	0.27	0.71
21	AEF	8 WABAS	3.6	0	1.15216	0.15	0.00	0.65	0.27	0.72
22	AEF	12 WABAS	3.6	0	1.12014	0.18	0.00	0.66	0.27	0.73

JEFF Meeting – Paris (France), November 25-28, 2013

> Unc. due STL depends on Burnup and Control 24

Reactivity at BOC, HFP and C_B=1348 ppm

III.3 U&Q of FAs:

	Fuel	# Burnup	Enrichmont	Burnup	Avorago		Δ	k/k% c	lue to	
#	Assembly	absorbers/ Control Rods	(w/o)	at BOC (GWD/TMU)	Kinf	STL	²³⁹ Pu	²³⁵ U	²³⁸ U	TOTAL
23	OFA	CTL-Ag-In-Cd	3.24	27054	0.68538	0.63	0.48	0.30	0.27	0.90
24	OFA	CTL-Ag-In-Cd	3.24	27519	0.70843	0.62	0.45	0.33	0.27	0.88
25	OFA	CTL-Ag-In-Cd	3.24	29340	0.71012	0.62	0.45	0.32	0.27	0.88
26	OFA	CTL-Ag-In-Cd	3.24	22908	0.72835	0.62	0.43	0.34	0.27	0.87
27	OFA	CTL-Ag-In-Cd	3.24	30456	0.69436	0.64	0.49	0.29	0.27	0.89
28	OFA	CTL-Ag-In-Cd	3.24	16273	0.80665	0.56	0.25	0.48	0.26	0.82
29	AEF	CTL-Ag-In-Cd	3.6	13050	0.85273	0.53	0.18	0.49	0.28	0.80
30	AEF	CTL-Ag-In-Cd	3.6	13285	0.85183	0.54	0.19	0.47	0.28	0.79
31	AEF	CTL-Ag-In-Cd	3.6	0	0.90497	0.53	0.00	0.65	0.26	0.88
32	OFA	CTL-B4C	3.24	27054	0.62228	0.69	0.47	0.29	0.27	0.93
33	OFA	CTL-B4C	3.24	27519	0.64298	0.67	0.44	0.32	0.27	0.91
34	OFA	CTL-B4C	3.24	29340	0.64454	0.68	0.44	0.31	0.27	0.91
35	OFA	CTL-B4C	3.24	22908	0.66091	0.67	0.42	0.33	0.27	0.90
36	OFA	CTL-B4C	3.24	30456	0.63041	0.69	0.48	0.28	0.27	0.92
37	OFA	CTL-B4C	3.24	16273	0.73125	0.61	0.25	0.47	0.26	0.85
38	AEF	CTL-B4C	3.6	13050	0.77150	0.59	0.17	0.47	0.28	0.82
39	AEF	CTL-B4C	3.6	13285	0.77077	0.59	0.19	0.46	0.28	0.82
40	AEF	CTL-B4C	3.6	0	0.82126	0.59	0.00	0.63	0.26	0.90

III.3 U&Q Core Analysis: Example of convergence for C_{Boron} (ppm) at BOC in the case of random ²³⁵U nuclear data

JEFF Meeting – Paris (France), November 25-28, 2013

III.3 U&Q for Core Analysis: Example of correlations) at BOC, obtained by randomizing the ²³⁵U transport nuclear data

JEFF Meeting – Paris (France), November 25-28, 2013

III.3 U&Q for Core Analysis: INDUSTRIALES Average value and absolute deviation as a function ETSIL UPM of the burnup for control bank worth

	Avorago	Absolu	te stanc	lard de	viation	(ppm)
	(ppm)	STL	²³⁹ Pu	²³⁵ U	²³⁸ U	Total
D-IN	120.3	1.3	0.5	0.7	0.7	1.7
C-IN	92.2	0.8	2.6	1.4	1.1	3.2
B-IN	138.1	0.9	0.5	1.6	0.8	2.0
A-IN	92.3	0.5	3.5	3.9	0.7	5.3
SB-IN	88.9	1.1	3.3	2.4	1.4	4.5
SA-IN	120.3	0.8	2.3	3.2	0.6	4.0
D+C-IN	237.8	2.1	2.9	0.7	1.6	4.0
D+C+B-IN	419.2	3.5	4.5	1.0	2.4	6.2
D+C+B+A-IN	565.2	4.1	1.6	6.5	1.7	8.0
D+C+B+A+SB-IN	701.8	5.6	2.8	3.9	2.9	7.9
ARI	917.5	7.8	2.6	5.4	3.2	10.3

> Uncertainty for each of the nuclear data varied (STL-H in H2O, 235,238 U and 239 Pu) and the sum of the different contributions < ~2%

III.3 U&Q for Core Analysis: Average value and absolute deviation as a function of the burnup: C_{boron} and F_z

≻ C_{Boron} vs Burnup

- o Max unc.: 50-70 ppm
- Most important contrib.: ²³⁵U and ²³⁹Pu

- ➤ F_z vs Burnup
 - Max unc.: 0.01-0.02 (~1-2%)
 - Most important contrib.: ²³⁸U

III.3 U&Q for Core Analysis: Average value and absolute deviation as a function of the burnup: A.O. and F_{AH}

> A.O. vs Burnup

- Max unc.: 1.5%
- Most important contrib.: ²³⁸U & STL

- \succ F_{Δ H} vs Burnup
 - Max unc.: 0.01-0.02 (~1-2%)
 - Most important contrib.: ²³⁵U & ²³⁹Pu

III.3 U&Q for Core Analysis: Average value and absolute deviation as a function of the burnup: V_{Boron} and CTM

Boron Worth vs Burnup

- Max unc.: 1 pcm/ppm (~12%)
- Most important contrib.: ^{235,238}U & ²³⁹Pu

- CTM vs Burnup
 - Max unc.: 5-7pcm/°C (~10%)
 - Most important contrib.: ^{235,238}U & ²³⁹Pu

III.3 U&Q for Core Analysis: Average value and absolute deviation as a function of the burnup: CTISO and CPow

CTISO vs Burnup

- Max unc.: 5-8pcm/°C (~10%)
- Most important contrib.: ^{235,238}U & ²³⁹Pu

CPOW vs Burnup

- Max unc.: 2-3pcm/% (~10%)
- Most important contrib.: ^{235,238}U & ²³⁹Pu

III.3 Design and acceptance criteria for start-up and operation: Calculated vs Measured

Core parameter	Design criteria	Acceptance criteria
Critical boron concentration ARO	$ (C_B)^M_{ARO}$ - $(C_B)^C_{ARO} < 50 \text{ ppm}$	$ \alpha C_B \times D(C_B)_{ARO} < 1000 \text{ pcm}$
Isothermal temperature coefficient ARO at HZP	$ (\alpha^{ISO}_{T})^{M}_{ARO} - (\alpha^{ISO}_{T})^{C}_{ARO} < 3.6 \text{ pcm/}^{\circ}C$	$ (\alpha^{\text{ISO}}_{\text{T}})^{\text{M}}_{\text{ARO}} - (\alpha^{\text{ISO}}_{\text{T}})^{\text{C}}_{\text{ARO}} < 6.62 \text{ pcm/}^{\circ}\text{C}$
Moderator temperature coefficient ARO at HZP	(α ^{CTM}) ^{HZP} _{ARO} <9 pcm/⁰C	
Boron Worth Coefficient at HZP	$ (\alpha C_B)^{M} - (\alpha C_B)^C < 0.7 \text{ pcm/ppm}$	
Control banks worth for Reference Bank	(I ^{REF}) ^M -(I ^{REF}) ^C <0.10x(I ^{REF}) ^C	(I ^{REF}) ^M -(I ^{REF}) ^C <0.15x(I ^{REF}) ^C
Control Bank Worth value for other Banks using Rod Swap Technique	(I ^{CBW}) ^M -(I ^{CBW}) ^C <0.15x(I ^{CBW}) ^C or 100 pcm	(I ^{CBW}) ^M -(I ^{CBW}) ^C <0.30x(I ^{CBW}) ^C or 200 pcm
Total Control Bank Worth	1.10 x($I^{TOT})^{C} > (I^{TOT})^{M} > 0.9x(I^{TOT})^{C}$	(I ^{TOT}) ^M >0.9x (I ^{TOT}) ^C
Axial Offset	(AO) ^M -(AO) ^C < 3%	
Max. Relative Assembly Power (P _A)	% (P _A) ^M -(P _A) ^C /(P _A) ^C {< 10% if P ≥90% < 15% if P<90%	

III.3 U&Q for Core Measurements: Measured boron concentrations (ppm) and calculated values versus cycle operation

	Burnup	Meas.	WIMS	S-D4	·D4 STL			F	Pu239	
						UNC			UNC	
						Abs.			Abs.	
Power (%)	(GWd/tHM)		С	M-C	C_Avg	Dev.	M-C	C_Avg	Dev.	M-C
50	0.015	1200	1141	59	1184	22	16	1149	28	51
75	0.031	1113	1062	51	1107	23	7	1070	29	43
100	0.134	985	990	-5	1035	24	-50	998	29	-13
100	1.34	870	883	-13	927	24	-57	892	31	-22
100	2.487	779	787	-8	830	23	-51	797	33	-18
100	2.842	755	758	-3	801	23	-46	768	34	-13
100	3.591	688	691	-3	732	23	-44	701	35	-13
100	4.441	604	617	-13	657	23	-53	627	36	-23
100	5.549	504	514	-10	552	23	-48	524	38	-20
100	6.692	412	405	7	443	23	-31	416	40	-4
100	7.716	319	305	14	341	23	-22	315	41	4
100	8.823	227	201	26	235	23	-8	211	42	16
100	10.284	101	57	44	90	23	11	68	44	33
100	11.351	4	-51	55	-19	23	23	-41	45	45
C= Calculated	M= M	easured								

III.3 U&Q for Core Measurements:

Measured Axial Offset (%) and

calculated values versus cycle operation

	Burnup	Meas.	WIMS-I	D4	4 STL			P	u239	
						UNC			UNC	
						Abs.			Abs.	M-
Power (%)	(GWd/tHM)		С	M-C	C_Avg	Dev.	M-C	C_Avg	Dev.	С
50	0.015	7.7	4.8	2.9	5.7	0.5	2.0	4.9	0.2	2.8
75	0.031	3.8	2.7	1.1	3.8	0.6	0.0	2.9	0.3	0.9
100	0.134	-0.7	-0.7	0.0	0.7	0.7	-1.4	-0.5	0.4	-0.2
100	1.34	-1.6	-2.0	0.4	-1.2	0.4	-0.4	-1.9	0.2	0.3
100	2.487	-2.4	-3.0	0.6	-2.6	0.2	0.2	-3.0	0.1	0.6
100	2.842	-2.8	-3.0	0.2	-2.7	0.2	-0.1	-3.0	0.1	0.2
100	3.591	-3.8	-4.3	0.5	-4.1	0.1	0.3	-4.2	0.1	0.4
100	4.441	-3.2	-3.2	0.0	-3.1	0.1	-0.1	-3.2	0.0	0.0
100	5.549	-3.9	-3.7	-0.2	-3.7	0.0	-0.2	-3.7	0.0	-0.2
100	6.692	-4.2	-3.8	-0.4	-3.8	0.0	-0.4	-3.8	0.0	-0.4
100	7.716	-4.7	-4.3	-0.4	-4.4	0.0	-0.3	-4.3	0.0	-0.4
100	8.823	-3.6	-2.4	-1.2	-2.4	0.0	-1.2	-2.4	0.0	-1.2
100	10.284	-3.5	-1.6	-1.9	-1.6	0.0	-1.9	-1.6	0.0	-1.9
100	11.351	-3.4	-2.0	-1.4	-2.1	0.0	-1.3	-2.0	0.0	-1.4
C= Calculated	M= M	easured								

III.3 U&Q for Core Measurments: Relative percentage assembly power calculated as: ((M-C) /C -100)

Relative percentage assembly power core distribution between measured (M) and calculated (C) <u>at BOC-HFP and Xenon</u>

<u>equilibrium</u>

Relative error in % for random cases (STL and ²³⁹Pu) is provided

 $_{\odot}$ Low unc. due to STLs < 0.3%

 \circ Max. unc. due to 239 Pu < 1.8%

	.3 3.7 4.9 -0.6 1.9 -1.8 -0.3 1.9 WIMS-D4													
5.3	3.7	4.9	-0.6	1.9	-1.8	-0.3	1.9	WIMS-D4						
5.9±0.1	4.1±0.2	5.6±0.2	0.0±0.2	2.2 ± 0.0	-1.8±0.0	-0.9±0.1	1.6±0.0	Random STL						
4.8-1.8	3.3 1.4	4.5±1.3	-0.7±0.4	1.8 ± 0.4	-1.6±0.6	-0.2 ± 0.6	2.1±0.7	Random ²³⁹ Pu						
3.4	2.2	2.8	4.6	1.0	0.5	-1.3	3.4							
3.8±0.2	2.6±0.1	3.3±0.2	5.2±0.2	1.1±0.1	$0.4{\pm}0.0$	- 1.6±0.1	3.1±0.0							
3.0±1.4	1.7±1.4	2.5±1.1	4.3±0.8	1.0±0.2	0.6±0.2	-0.9±1.1	3.4±0.6							
4.0	2.2	4.6	-1.6	0.0	-1.6	-0.4								
4.7±0.2	2.6±0.2	5.2±0.1	-1.2 ± 0.1	-0.1±0.1	-1.9±0.1	-0.7±0.1								
3.6-1.3	1.8±1.1	4.4±1.0	-1.6±0.2	-0.1±0.2	-1.3 ± 0.8	0.0=1.3								
-1.7	3.5	-1.9	0.0	-1.4	-2.0	2.5								
-1.1±0.2	4.1±0.2	-1.6±0.1	$0.0{\pm}0.1$	-1.9±0.2	-2.3±0.2	2.0±0.0								
-1.8±0.4	3.2±0.8	-1.9±0.2	-0.2 ± 0.5	-1.5 ± 0.1	-1.7 ± 0.8	2.5±0.7								
0.4	-0.4	-1.0	-2.3	-1.8	-0.7									
0.8 ± 0.0	-0.3±0.1	-1.0±0.1	-2.7±0.2	-2.4 ± 0.3	-1.2 ± 0.2									
0.3±0.4	-0.5 ± 0.2	-1.1±0.2	-2.4±0.1	-1.9 ± 0.1	-0.7 ± 0.2									
-3.1	-1.0	-2.9	-2.6	-1.0										
-3.1±0.0	-1.2 ± 0.0	-3.2 ± 0.1	-2.9±0.2	-1.5=0.3										
-2.9±0.6	-1.0±0.2	-2.6 ± 0.8	-2.3±0.8	-1.0 ± 0.2										
-0.8	-2.0	-1.5	0.5											
-1.4±0.1	-2.2±0.1	-1.6±0.1	0.2 ± 0.0											
-0.7 ± 0.6	-1.6±1.1	-1.0+1.3	0.7 ± 0.7											
1.6	3.1							Fresh Fuel						
1.2 ± 0.0	3.1±0.0													
1.9±0.7	3.4±0.6													
Ý														
C= Cal	culated		M= M	easure	b									

Summary and conclusions

PART I. Uncertainty in Nuclear Data: TENDL2012 Random Files

I.1 STLs

I.1.1 Current Uncertainty Data in Elastic Cross-Section for H in H2O

- I.1.2 Random Inelastic Cross-Section: H-H2O ("Petten" Methodology)
- I.2. ^{235,238}U and ²³⁹Pu TENDL2012

PART II. SEANAP System

- II.1 Introduction to SEANAP
- II.2 Scheme of the PWR Core Analysis SEANAP System
- II.3 Validation of SEANAP System

PART III. STLs Uncertainty Propagation in a PWR

- III.1 Random STL processing with SEANAP System
- III.2 PWR Core Analysis
- III.3 Uncertainty & Quantification

Summary and conclusions

- The current methodology to predict the <u>calculational uncertainty</u> in a core analysis system is based on an extensive validation of the calculated results (using a computational code and its nuclear data) and the measured and design data at cycle start-up tests and nominal operation.
- > However, this calculational uncertainty ignores the term due to the uncertainty in NDs:
 - We have analyzed the uncertainty of some safety core design parameters for a typical PWR in terms of the uncert. due to nuclear data in ^{235,238}U, ²³⁹Pu and STL-H in H₂O
 - To perform this uncertainty propagation study, a Monte Carlo method is applied, repeating similar calculations using a set of TENDL2012 random nuclear data files
 - Since global uncertainties are within the design and acceptable criteria, it can be concluded that calculation uncertainties due to nuclear data ensure bounding estimates in safety margins
 - However, high uncertainties of 50-60 ppm in the boron concentration, close to the design criteria, suggest that nuclear data uncertainties (for fission reactions of ²³⁵U and ²³⁹Pu) in TENDL2012 are very high compared with other uncertainty libraries, such as SCALE6/UN

Acknowledgements

This work is supported by:

- Agreement between CSN & UPM in the area of "Uncertainty Propagation for Neutronic Calculations" (2012-16)
- Fellowship "Cátedra Federico Goded ", CSN/Department of Nuclear Engineering (UPM)

Authors would like to acknowledge the excellent support provided by **D. Rochman (NRG)** generating the TENDL-2012 random files for the uncertainty analysis performed in this work