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Motivation 

 Uncertainties in the outputs of modeling and simulation codes such as MCNP and SCALE       
inherently depend on nuclear data uncertainties as described by the covariance matrix of a 
given data library. 

 
 No procedure exists for producing or representing covariance matrices for thermal neutron 

scattering data in libraries (such as ENDF format). 
 
 Thermal neutron scattering libraries are typically produced using physics models that 

incorporate structural information of a given material.  For inelastic scattering, the dynamic 
structure factor S(α, β) is the fundamental output. 

 
 In crystalline materials, S(α, β) is a function of the phonon frequency spectrum, or 

vibrational density of states (DOS).     
 
 By capturing the uncertainties of the phonon spectrum in the S(α, β) covariance matrix, 

covariance matrices may be produced for the secondary neutron distributions in energy and 
angle, and for the integrated inelastic scattering cross sections. 



 
 
 
 

Objectives 

 
 Investigate the uncertainty contribution of the physics model, its parameters and the 

methodology implemented to generate the DOS.  Silicon dioxide (α-quartz) will be used as 
the example material in this work due to the particular features of its DOS. 

  
 Establish probability distribution functions (PDFs) for the various energy regions of the 

DOS spectrum that reflect the physical and statistical attributes of the DOS.  
 
 Explore the utilization of Monte Carlo sampling of these PDFs to generate a set of perturbed 

phonon spectra for production of an S(α, β) covariance matrix. 
 
 Produce an S(α, β) covariance matrix and examine the impact of its propagation.  



Thermal Neutron Scattering  
and Energy Transfer 

 The de Broglie wavelength (λ = h / p) of thermal neutrons (< ~ 1 eV) is on the order of the  
interatomic distances in crystalline solids. 

  
 The energy of thermal neutrons is on the same order as the vibrational excitation modes (e.g., 

phonons) available in condensed matter. 
 
 

Thermal Neutron Scattering Cross Sections  



Modifying the Free-Atom Cross Section for α-quartz SiO2 



Modifying the Free-Atom Cross Section for α-quartz SiO2 



Thermal Scattering Theory 

Using the first-order Born approximation and Fermi pseudopotential, the double-differential   
thermal neutron scattering cross section may be written as 

Applying the incoherent approximation for inelastic scattering, 

yields 
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Thermal Scattering Theory 

For n = 1:   with 

(the term e-αλ is the Debye-Waller factor) 

For n > 1:   

The DOS, ρ|β|, is the primary 
unknown parameter 
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Momentum transfer factor: 

Energy transfer factor: 
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Generating the Phonon Density of States 

The phonon DOS can be generated in several different ways: 
 
1.  A double-differential scattering experiment can be performed measuring time-of-flight and      
     scattering angle.       
 
2.  Lattice dynamics can be applied using force constant models. 
 
     a.  Force constants obtained by fitting to thermodynamic experimental data. 
     b.  Force constants obtained by fitting to experimental dispersion curves along symmetry  
          directions in the first Brillouin zone. 
     c.  Force constants obtained theoretically from first principles using density functional       
          theory (DFT).  This will be the approach utilized in this work. 
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Reference α-Quartz DOS  

Silicon is normalized to 1/3.  Oxygen is normalized to 2/3. 



Comparison of Experimental and Calculated  
Cross Sections for α-Quartz   
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Discrete DOS for Natural Si in α-Quartz  

The ρ|β| DOS is itself a PDF of available energy transfer quanta.   
 
Consider the normalized DOS to consist of many random variables with possible valuations 
described by PDFs. 
 
Ideally, these PDFs should represent statistical uncertainties in the phonon counting process  
and feature uncertainties due to uncertainties in the physics model parameters. 



Hexagonal Structure of α-quartz 

Silicons (yellow), Oxygens (red) 

Lattice constant a:  4.913 Å 
Lattice constant b:  4.913 Å 
Lattice constant c:  5.405 Å   



Three Examples of Parameter-Modified DOS Spectra 

Maximum shift in features observed is < ~ 0.001 eV (about one bin-width).  Other parameter  
modifications (not plotted here) yield similar results.  In this work, a PDF is assumed which  
randomly shifts each “bin feature” up or down in energy within +/- one bin width.   
Renormalization follows.   



Example of Perturbed DOS Difference                        
from Reference DOS 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16



Calculating the SENDF(α,β) Covariance Matrix  

  

The symmetric SENDF(α,β) covariance matrix will be calculated, where SENDF(α,β)  =  eβ/2 S(α,β). 
  
The terms yi and yj represent SENDF(α,β) terms for different α and β combinations. 
 
Each SENDF(α,β) term is calculated for a Monte Carlo trial k with a particular perturbed DOS k 
   for k = 1 to N with N = 330.  
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Distribution of λ Values 
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Maximum Value of Lambda in Bin 

Standard Deviation 0.053738 
Monte Carlo Mean 1.899448 

Basis Mean 1.893759 

low high 
alpha PERCENT PERCENT 
values change change 

0.010 -0.053723 0.053752 
0.015 -0.080574 0.080639 
0.023 -0.120837 0.120983 
0.034 -0.181201 0.181530 
0.051 -0.271678 0.272418 
0.076 -0.407240 0.408905 
0.114 -0.610237 0.613984 
0.171 -0.913958 0.922388 
0.256 -1.367800 1.386768 
0.384 -2.044668 2.087347 
0.577 -3.051271 3.147303 
0.865 -4.541813 4.757908 

1.297 -6.734768 7.221092 
1.946 -9.930104 11.024887 
2.919 -14.519021 16.985089 
4.379 -20.967771 26.530658 
6.568 -29.740291 42.329083 
9.853 -41.107563 69.801091 

14.779 -54.805115 121.263977 
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Uncertainty Bands for SENDF,n(α=0.3,β) with n = 1, 2 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14



Absolute and Relative Uncertainty in SENDF,n(α=0.3,β) 
with n = 1, 2 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16



Correlation Matrix for SENDF,n(α=0.3,β) with n = 1+2 
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Propagating an SENDF(α,β) Covariance Matrix 

The general matrix formula for first-order propagation of uncertainty and covariance is 
 

The variables z represent integrated cross sections (across any range of α and/or β), the 
variables y represent SENDF(α,β) terms, and Mzy is the sensitivity matrix with entries 

  
Given the relationship 

can be computed analytically and need not be stored in file space. 

The SENDF(α,β) covariance matrix can be propagated to yield covariance matrices for  
secondary neutron energy distributions, coupled energy-angle bin distributions, or 
integrated inelastic scattering cross sections.  

𝐶𝐶𝐶 𝑧𝑚 , 𝑧𝑖 = 𝑽𝑧𝑚𝑖 = 𝑴𝑧𝑧
𝑇 𝑽𝑧𝑖𝑖𝑴𝑧𝑧. 
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𝜕𝑧𝑖
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Impact on Secondary Neutron Energy Distributions 
(1-Phonon Distribution for 1.0 eV Incident Energy in 293.6 K Material) 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16



Summary / Conclusions 

 Development of an S(α,β) covariance matrix would allow construction of covariance matrices for 
secondary neutron energy distributions, coupled energy-angle distributions and integrated inelastic 
cross sections.  
 

 For the current methodology of producing thermal cross sections from a physics model, 
covariances among S(α,β) data must reflect uncertainties in the DOS input parameter, ρ|β|.    

 
 Uncertainties in the DOS can be addressed through discretization of the DOS into energy-

dependent PDFs. 
 

 At room temperature, the majority of uncertainty in thermal neutron scattering arises from 
uncertainty in the one-phonon terms of S(α,β).    
 

 Large uncertainties in particular S(α,β) values and in secondary neutron energy distributions at 
corresponding β values can exist while integrated inelastic cross section uncertainties may be 
small.   
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