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Formats and procedures are currently established for representing covariances in the ENDF li-
brary for many reaction types. However, no standard exists for thermal neutron inelastic scattering
cross section covariance data. These cross sections depend on the material’s dynamic structure
factor, or S(α, β). The structure factor is a function of the phonon density of states (DOS). Pub-
lished ENDF thermal neutron scattering libraries are commonly produced by modeling codes, such
as NJOY/LEAPR, which utilize the DOS as the fundamental input and directly output the S(α, β)
matrix. To calculate covariances for the computed S(α, β) data, information about uncertainties
in the DOS is required. The DOS may be viewed as a probability distribution function of avail-
able atomic vibrational energy states in a solid. In this work, density functional theory and lattice
dynamics in the harmonic approximation were used to simulate the structure of silicon dioxide (α-
quartz) to produce the DOS. A range for the variation in the partial DOS for silicon in α-quartz
was established based on limits of variation in the crystal lattice parameters. Uncertainty in an
experimentally derived DOS may also be incorporated with the same methodology. A description
of possible variation in the DOS allowed Monte Carlo generation of a set of perturbed DOS spectra
which were sampled to produce the S(α, β) covariance matrix for scattering with silicon in α-quartz.
With appropriate sensitivity matrices, it is shown that the S(α, β) covariance matrix can be propa-
gated to generate covariance matrices for integrated cross sections, secondary energy distributions,
and coupled energy-angle distributions.

I. INTRODUCTION

Nuclear data libraries in ENDF-6 [1] format provide
fundamental reaction information that is processed for
use by modeling and simulation codes such as MCNP
and SCALE. Uncertainties in the outputs of these codes
are inherently functions of uncertainties and covariances
in the ENDF library. ENDF formats and procedures are
currently established for representing covariance matri-
ces for various experiment-based nuclear data. These
matrices are generated utilizing experimental and empir-
ical model data. However, thermal neutron scattering
libraries accounting for crystal structure are convention-
ally generated theoretically using atomistic models of the
material of interest. In solids, these models can produce
the phonon density of states (DOS) that defines the scat-
tering law, or S(α, β). In this case, the DOS uncertain-
ties are due to uncertainties in the atomistic simulation
process. The DOS may be recognized as a probability
distribution function of available energy states for en-
ergy exchange between a neutron and the atomic matrix.
Consequently, by using a random sampling approach for
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capturing the DOS uncertainties, the S(α, β) covariance
matrix can be established. This facilitates the construc-
tion of covariance matrices for differential and integral
thermal inelastic scattering cross sections.

II. CALCULATING UNCERTAINTY IN
THERMAL INELASTIC SCATTERING

A. Scattering Theory

Thermal neutron inelastic scattering occurs through
discrete emission and absorption of phonons which can
be described as wave vectors in reciprocal space. If co-
herent inelastic scattering is negligible, as is the case
for many materials (including α-quartz), an incoherent
approximation is valid. The double-differential inelastic
thermal neutron scattering cross section in the incoherent
approximation (as used by LEAPR [2]), in terms of the
symmetric ENDF S(α, β) dynamic structure factor, is

d2σ(E)
dμdE′ =

σb

2kBT

√
E′

E
e−β/2S (α, β) . (1)

E and E’ are the incident and scattered neutron energies,
μ is the scattering angle cosine in the laboratory frame,
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σb is the scattering nuclide bound cross section, kB is
Boltzmann’s constant, and T is the temperature. The
dimensionless momentum and energy transfer factors are
α =

(
E′ + E − 2

√
EE′μ

)
/AkBT and β = (E′−E)/kBT ,

respectively, where A is the scattering nuclide to neutron
mass ratio. It is instructive to rewrite Eq. (1) as

d2σ(E)
dαdβ

=
AkBTσb

4E
e−β/2S (α, β) . (2)

In the incoherent approximation, the symmetric ENDF
dynamic structure factor for one-phonon scattering is

S1(α, β) = αe−αλ ρ(β)
2β sinh(β/2)

, (3)

where

λ =
∫ ∞

−∞

e−β/2ρ(β)
2β sinh(β/2)

dβ, (4)

is the Debye-Waller coefficient. The term ρ(β) is the
phonon DOS in terms of β, and

S(α, β) =
∞∑

n=1

Sn(α, β), (5)

where Sn(α, β) are the terms for n-phonon scattering.
These are calculated by successive convolutions over
ρ(β) [2]. As such, the higher-order terms are progres-
sively less sensitive to the features of ρ(β). However, as
E → 0 (and as α → 0), one-phonon scattering becomes
increasingly dominant.

B. Covariance Matrices

The general matrix formula for first order propagation
of uncertainty is

V y = M TV x M . (6)

V x and V y are the covariance matrices for all input vari-
ables x and all output variables y. Define x as the set of
all S(α, β) terms, calculated over α and β grids, and de-
fine y as a data set resulting from integrating Eq. ((2))
over specified ranges of α and/or β. For given T , A and E,
only S(α, β) for physically possible α and β combinations
can be included in the integration. M is the sensitivity
matrix for each y variable with respect to each x variable,
with entries M ij = ∂yj/∂xi. Since numerical integration
of S(α, β) over α and/or β grids is analogous to alge-
braic summing, M is trivial to construct. Given V x for
S(α, β), it is straightforward in principle to construct V y

for any integrated output data set [3]. These may include
σ(E), dσ(E)/dE′, or coupled energy-angle distributions.
To theoretically calculate a dynamic structure factor co-
variance matrix, a description of uncertainties in the DOS
is required.

III. ASSESSING UNCERTAINTY IN THE
PHONON FREQUENCY SPECTRUM

The DOS can be generated using the ab initio code
VASP and lattice dynamics code PHONON [4–6]. Model
parameters are supplied to VASP, including crystal struc-
ture and lattice constants. VASP relaxes the system to
its lowest energy state and calculates Hellmann-Feynman
forces between atoms. Applying lattice dynamics in the
harmonic approximation, PHONON constructs a dynam-
ical matrix using the forces calculated by VASP. Through
random sampling of wave-vectors (and their associated
phonon frequency eigenvalues) in the first Brillouin zone,
the DOS is produced pointwise over a specified energy
mesh. This can then be renormalized to generate ρ(β).
Thus, ρ(β) is a probability distribution function of avail-
able excitation energy states defined over discrete bins
and scaled by kBT .

The features of this calculated ρ(β) may be offset to
some extent in energy or have some error in magni-
tude with respect to the true ρ(β). Calculated values
at each energy point are already statistical averages over
the energy resolution established for the wave-vector sam-
pling. Additional uncertainties exist due to uncertainties
in model parameters and/or the model itself. Determin-
ing this explicitly would be cumbersome. However, by
varying the lattice constants supplied to VASP over the
range of experimental to relaxed values (<1% change),
and by testing the sensitivity of ρ(β) to other model pa-
rameters in the input of VASP, an expected maximum
variation in the features of ρ(β) can be assessed. The
ρ(β) spectrum can be randomly perturbed within the ob-
served range of variation, while accounting for statistical
uncertainty and keeping features appropriately coupled in
energy, to produce a set of renormalized perturbed ρ(β)
spectra. A full S(α, β) matrix can be calculated from
each ρ(β) in this set. Each calculation consists of one
Monte Carlo trial. An S(α, β) covariance matrix may
then be calculated by processing the results of a large
number of trials.

IV. MONTE CARLO RESULTS

For this work, Si in SiO2(α-quartz) was selected as the
scattering medium to demonstrate the impact of partic-
ular characteristics of its DOS. Fig. 1 gives the reference
ρ(β) spectrum for Si in α-quartz [7]. The spectrum was
observed to shift up to a maximum of about 1 meV, or
slightly more than one bin width, although not uniformly
over energy. For each of the 500 Monte Carlo trials per-
formed, the random perturbations in ρ(β) account for
this localized energy-shift potential. To benefit the in-
structive quality of the S(α, β) results, a moderately low
fixed α = 0.1 is used which ensures significant one-phonon
scattering while not overly suppressing multiphonon scat-
tering. For all cases, T = 293.6K is the reference temper-
ature. For clarity, the abscissa for all plots is in energy
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FIG. 1. ρ(β) for Si in α-quartz plotted over energy (eV).

(eV) instead of β.
S(α, β) was calculated to phonon order 8 (which is suf-

ficient for convergence for α = 0.1) over a fixed β grid.
For each Monte Carlo trial, in addition to ρ(β) spectral
shifting, a temperature uncertainty of 1% was instituted
(where 1% is considered one standard deviation for a nor-
mal distribution with mean T = 293.6K). Since β is
a function of temperature, the β grid points at which
S(α, β) is calculated are scaled by Trandom/Treference for
each Monte Carlo trial. This allows plotting uncertainty
in S(α, β) as a function of energy transfer. Fig. 2 gives
-1σ and +1σ bands for S(α, β) about its mean to display
the range of variation.

FIG. 2. ENDF S(α, β) high and low bands for +/- σ.

The percent standard error in S(α, β) with and without
the 1% temperature variation is demonstrated in Fig. 3.
Multiphonon scattering increases with temperature as the
phonon occupation number rises. Therefore, when the 1%
temperature variation is introduced, peaks in uncertainty
are seen at energy transfers where one-phonon scattering,
or ρ(β), has low probability (e.g., 0.06, 0.07, 0.085 and
0.095 eV) and valleys are seen at energy transfers where
one-phonon scattering is dominant (e.g., 0.065, 0.075 and
0.09 eV). For the case without temperature variation,
peaks in uncertainty are seen at energy transfers asso-
ciated with high-slope regions of ρ(β) (e.g., 0.062, 0.068
and 0.072 eV) and valleys are seen at energy transfers

FIG. 3. ENDF S(α, β) percent standard error with and with-
out temperature variation.

associated with flatter regions of ρ(β) (e.g., 0.06, 0.065
and 0.07 eV).

Fig. 4 separates the percent standard error in S(α, β),
with no temperature variation, into one-phonon and mul-
tiphonon scattering components. It can be seen that

FIG. 4. ENDF S(α, β) percent standard error, with no tem-
perature variation, for one-phonon and multiphonon scatter-
ing.

most of the uncertainty introduced by randomly shift-
ing ρ(β) in energy is exhibited through one-phonon scat-
tering. This is because higher-order phonon terms, even
when dominant, are largely insensitive to the structure of
ρ(β). At a particular energy transfer, the uncertainty for
all-phonon scattering (as shown in Fig. 3) is less than the
uncertainty for one-phonon scattering due to one-phonon
and multiphonon scattering being negatively correlated.

Percent standard error in differential cross sections
with respect to energy transfer (integrated over all phys-
ical α) is given in Fig. 5 with and without temperature
variation. It is evident that the integrated uncertainties
are smaller, but still significant. With temperature vari-
ation, there is greater uncertainty in upscattering (which
has a larger multiphonon component) than in downscat-
tering. Conversely, without temperature variation, there
is greater uncertainty in downscattering (which has a
larger one-phonon component) than in upscattering. In
either case, the net percent standard error in integrated
upscattering and downscattering cross sections is on the
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FIG. 5. Percent standard error in differential cross sections
with respect to energy transfer, with and without temperature
variation.

order of a few percent, even for the extremely small per-
tubations introduced in ρ(β) and in temperature.

FIG. 6. Topographic map of the S(α, β) correlation matrix.

It is instructive to view a cross section of the S(α, β)
correlation matrix vs. the covariance matrix. In the ex-

ample given in Fig. 6, temperature variation does not
occur and α = 0.1. The structure of ρ(β) is evident.
The diagonal of full correlation is easily seen along with
elevated bands associated with regions of ρ(β) with low
probability (where highly correlated multiphonon scat-
tering terms are present). The continuous relatively flat
region of ρ(β) is evident below 0.06 eV, with relatively
little correlation variation over energy. The axes extend
to 0.27 eV, allowing correlation blocks to be seen which
correspond to combinations of high probability regions
of ρ(β) (e.g., 0.20 eV = 2 × 0.10 eV). The ridges evi-
dent throughout generally map the features of ρ(β) over
energy. While not displayed, the features of the S(α, β)
correlation matrix mapped over α for fixed β are smooth
and can be predicted analytically.

V. CONCLUSIONS

A Monte Carlo method of sampling randomly per-
turbed phonon spectra to generate an S(α, β) covariance
matrix has been implemented. Among other factors, the
quantification of the S(α, β) covariance matrix depends
on uncertainties in the phonon spectrum, which is a
fundamental input to the scattering law. The phonon
spectrum uncertainties were estimated as a function of
variations in the atomistic model parameters. In this
work, the S(α, β) covariance matrix for Si in α-quartz
was propagated to calculate a covariance matrix for dif-
ferential scattering cross sections with respect to energy
transfer. It was found that a maximum 1% variation in
the lattice constants resulted in maximum uncertainties
of about 20% in these differential cross sections. It is
anticipated that this methodology would enable the
description of covariances in ENDF thermal neutron
inelastic scattering data based on both computational
analysis and experimental measurements.
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