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Temperature can strongly affect the probabilities of certain neutron interactions (fission, capture, scatter-
ing, etc.) with materials. These probabilities are referred to in the nuclear community as ‘cross sections’
and are used as inputs for computer simulations. During the lifetime of a nuclear reactor, the core and its
surrounding materials will experience a wide range of temperatures. To simulate the neutronic behavior
in a realistic core, it is required to pre-store a large amount of cross section data to encompass the entire
temperature range a neutron may experience. In recent years, methods have been developed to reduce
data storage and obtain the cross section at the desired temperature ‘on-the-fly’ during radiation trans-
port simulations using Monte Carlo codes. At thermal energies, however, the scattering of neutrons is
complicated by their relatively small wavelengths, making molecular binding and lattice effects signifi-
cant. Current approaches typically require nuclear data file sizes of tens to hundreds of MB per temper-
ature, which can be prohibitive for realistic reactor physics simulations. To reduce the storage burden, a
fitting approach in temperature is investigated that allows for the efficient evaluation of the thermal neu-
tron scattering physics at an arbitrary temperature within a predefined range. The physics for thermal
neutron scattering in graphite and hydrogen in water are evaluated with this approach. In both cases,
the functional fits are able to accurately reproduce the scattering probabilities. The data storage for
the fitting approach requires only a few 100 kB, which is a significant memory savings over the existing
methods. These data can be used to sample a neutron0s outgoing energy and scattered angle at an arbi-
trary temperature with minimal errors.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. On-the-fly sampling of nuclear data in Monte Carlo simulations

In reactor physics, nuclear reaction cross sections, as a function
of neutron energy, are greatly affected by the temperature of the
target material. One well-known phenomenon related to tempera-
ture effects is the Doppler broadening of cross sections at reso-
nance neutron energies. The range of resonance energies can be
broadened for fission and capture reactions as the material tem-
perature increases due to the change in relative motion between
the neutron and the target. In order to accurately model this phe-
nomenon in the computer simulation of neutron transport and
account for temperature feedback in coupled neutronic–thermal–
hydraulic reactor analysis, nuclear cross sections need to be
pre-calculated and stored at a wide range of temperatures. This
strategy becomes ineffective as computer memory is a concern.
In certain reactor designs like the Very High Temperature Gas-
Cooled Reactors (VHTR), the temperature variation can be very
broad and very sharp during normal and transient operations
(Yesilyurt et al., 2007). This requires a prohibitive amount of mem-
ory usage to store cross section data on fine temperature bins. It is
desired to seek an alternative strategy to store and use the temper-
ature-dependent cross section data.

On-the-fly sampling is one effective means for reducing data
storage in computer simulations, specifically for Monte Carlo
method-based simulations. Ideally, it is desired that cross section
data for neutron-nucleus reactions for any type and at any temper-
ature can be generated and used on-the-fly during the random
walk process without introducing additional computational costs
compared with the pre-storage strategy. In order to achieve this,
one needs to have a comprehensive understanding of physical
models developed for all the cross sections evaluated and used in
the past and to develop physics-based fast sampling methods that
are tailored specifically for incorporation of cross sections into
Monte Carlo simulations. Over the past few decades, less attention
has been paid to this research area. This situation, however, has
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changed over the past few years. Recently, a method has been
developed and implemented into the Monte Carlo code MCNP6
(Goorley et al., 2012) to on-the-fly sample cross sections of any
reaction type for the most important resonance absorber nuclides
(Yesilyurt et al., 2012). By only storing zero temperature cross sec-
tions, the Doppler broadening of total, fission and capture cross
sections can be accurately sampled for the desired temperature
and for any incoming neutron energy during the random walk.
The computational storage has been significantly reduced by elim-
inating the need to store cross sections at every temperature of
interest and for each isotope. Meanwhile, a new stochastic method
has been developed to account for the motion of target nuclei on-
the-fly by only using zero temperature cross sections in Monte Car-
lo neutron transport simulations. The method is based on explicit
treatment of the motion of target nuclei at collision sites and the
use of rejection sampling techniques. It is shown to be capable of
accurately modeling continuous temperature distributions and
has been implemented in the Monte Carlo reactor physics code
Serpent (Viitanen and Leppänen, 2012).

For elastic scattering reactions in the epithermal energy range,
new methods for the on-the-fly Doppler broadening of the elastic
scattering kernel have also been developed in recent years: the
Doppler Broadening Rejection Correction (DBRC) method (Becker
et al., 2009) and the Weight Correction Method (WCM) (Lee et al.,
2009). These methods show better accuracy than the original Sam-
pling of the Velocity of the Target nucleus (SVT) algorithm (Carter
and Cashwell, 1975) to on-the-fly sample a neutron’s outgoing
energy and angle after a scattering reaction at epithermal energies.
Both the DBRC method and WCM involve sampling parameters in
the center-of-mass frame followed by a conversion of sampled
parameters back to the laboratory frame. More recently, an alterna-
tive method has been developed to directly sample a neutron’s out-
going parameters in the laboratory frame with similar accuracy to
the DBRC method (Sunny and Martin, 2013) by on-the-fly generat-
ing the moments of the differential scattering probability density
function (PDF) at any temperature. For other important tempera-
ture-dependent cross sections, such as for scattering reactions that
need to account for both thermal agitation and chemical bond
effects at thermal energies and reactions at unresolved resonance
energies, on-the-fly sampling methods have not yet been developed
(Brown et al., 2012). In this paper, the focus is the on-the-fly sam-
pling of S(a,b) data at thermal energies.

In previously developed on-the-fly sampling methods, the dis-
tribution of the target nuclide energy is assumed to follow a Max-
well–Boltzmann distribution. This assumption leads to the
formation of analytical expressions as a function of energy and
temperature for the previously studied cross sections or scattering
kernel. Although these expressions are in complicated forms, such
analytical temperature dependence allows the functional expan-
sion of cross sections as a summation of a series of simple basis
functions, thus providing a fast approach to generate tempera-
ture-dependent cross sections on-the-fly. However, complications
arise in the thermal energy region for scattering reactions. First,
the assumption of the target isotopes following a Maxwell–Boltz-
mann distribution is not valid. Second, neutron–nucleus scattering
interactions become much more complicated than epithermal
scattering and resonance reactions. Consequently, functions to
account for all the physics included in the scattering event are in
a complicated integral form and do not have an analytical temper-
ature dependence (Koppel et al., 1967). This makes it much more
challenging or even impossible to generate double differential
scattering cross sections on-the-fly following similar methods
developed for cross sections at resolved-resonance and epithermal
energies. A new strategy is needed to treat the temperature depen-
dence of the double differential scattering data in the thermal
energy region. In this paper, we present an on-the-fly methodology
that can sample a neutron’s outgoing energy and flight angle after a
thermal scattering event at an arbitrary temperature. This method
removes the need to store the inelastic double differential thermal
scattering cross section data at discrete temperatures.

1.2. Thermal neutron scattering with nuclear materials

When thermal neutrons interact with bound isotopes, the
atom’s translational, rotational and vibrational motions, which
are strongly correlated with the ambient temperature, can affect
the neutron scattering cross sections as well as the outgoing
energy and angle after the scatter. These effects are significant
for neutrons in the thermal energy range (<4 eV). In the thermal
energy region, the neutron and target have comparable energies
so that competing inelastic upscattering and downscattering
events occur. In addition, the scattering process is divided into a
coherent and an incoherent portion, where the incoherent portion
ignores interference effects between the neutron and the target
where the scattering from different planes of atoms can interfere
as the neutron wavelength hits different atomic spacings. Both
incoherent and coherent inelastic scattering are important for all
moderating materials, though it is typical to ignore the coherent
part of inelastic scattering with minimal error (MacFarlane et al.,
2012). Therefore, the focus of this paper is on incoherent inelastic
neutron scattering. Methods for temperature correcting the elastic
portion of thermal neutron scattering are saved for future work.

The incoherent inelastic differential scattering cross section in
the thermal region is denoted by Bischoff and Yeater (1972)

rðE! E0;X �X0; TÞ ¼ rb

2kT

ffiffiffiffi
E0

E

r
e�

b
2Sða;b; TÞ; ð1Þ

where E and E0 represent the pre- and post-collision energy, respec-
tively, X �X0 represents the pre- and post-collision scattering angle
(X �X0 ¼ l, where l is the cosine of the scattering angle), rb is the
bound atom scattering cross section, k is the Boltzmann constant
(=8.617E�5 eV/K), T is the ambient temperature and Sða; b; TÞ is the
symmetric form of the scattering law which contains much of the
thermal scattering physics. The variables a and b are dimensionless
quantities that define momentum and energy transfer, respectively,

a ¼ Eþ E0 � 2l
ffiffiffiffiffiffiffi
EE0
p

A0kT
; ð2Þ

b ¼ E0 � E
kT

; ð3Þ

where A0 is the mass ratio of the target nucleus to neutron. In clas-
sical quantum mechanics, the scattering law is related to a dynamic
structure factor (Sutton et al., 2009) by

Sða; bÞ ¼ e
b
2

kT
�h

Sðj;xÞ; ð4Þ

where �hj and �hx represent, respectively, momentum and energy
transfer and Sðj;xÞ is the dynamic structure factor. The dynamic
structure factor is the time Fourier transform of the intermediate
scattering function, vðj; tÞ,

Sðj;xÞ ¼ 1
2p

Z
e�ixtvðj; tÞdt; ð5Þ

while the intermediate scattering function is the spatial Fourier
transform of a self-correlation function, Gs(r,t),

vðj; tÞ ¼
Z

eij�rGsðr; tÞdr: ð6Þ

The differential self-correlation factor, Gs(r,t)dr, is the condi-
tional probability of a nucleus located in dr about r at some time
t given the same nucleus located at the origin at time zero. Approx-
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imations can be applied to the self-correlation function for certain
materials to make the calculation of the scattering law easier.
However, in general, the scattering law Sða; b; TÞ is a complicated
function with no smooth temperature or energy dependence.

1.3. Thermal neutron scattering data storage in Monte Carlo codes

Scattering law data are generated in NJOY (MacFarlane et al.,
2012) and stored in ENDF thermal scattering files for specific mod-
erator materials on a mesh of alpha and beta values at specific tem-
peratures. Interpolation laws are provided for each material to
obtain intermediate values in the (a,b) space within a specified
fractional tolerance. Monte Carlo codes, e.g., Racer and MC21, use
a method of obtaining data continuous in angle and energy
(Ballinger, 1995; Sutton et al., 2007) and, in recent years, the tradi-
tional discrete-in-energy thermal neutron scattering treatment
used in MCNP has been improved and tested to allow for a contin-
uous-in-energy treatment (Pavlou et al., 2012). The continuous
representation requires a fine energy mesh. To accurately model
a system, the cross section data must encompass the entire energy
and temperature ranges. The continuous S(a,b,T) data sets, how-
ever, can be quite large even for a single temperature. Table 1
shows the continuous S(a,b,T) file sizes in ENDF/B-VII.1 for selected
moderator materials produced by NJOY at room temperature
(MacFarlane et al., 2012).

The S(a,b,T) datasets at many temperatures are often needed to
model a realistic nuclear reactor system. For example, TRIGA
research reactors are inherently safe because of the U-ZrH fuel
used which gives a prompt negative temperature coefficient
(Terrani et al., 2012). The operating temperature of the fuel ranges
from about 300 K to 1000 K, so many S(a,b,T) datasets are needed
for H in ZrH to model a TRIGA reactor in the thermal energy region.
One of the Generation IV reactor designs, the VHTR, is graphite-
moderated and the operation temperature can exceed 1200 K. Dur-
ing accident scenarios like the Loss of Forced Cooling (LOFC), the
maximum fuel temperature can reach around 2000 K under oper-
ation of the Reactor Core Cooling System (RCCS) (Vilim et al.,
2004). In the safety analysis and evaluation, thermal scattering
nuclear data including S(a,b,T) datasets of graphite material in
the temperature range from room temperature to the above tem-
peratures are needed to provide reliable neutronic and thermal–
hydraulic calculations for the normal, transient and accident
scenarios.

In current Monte Carlo codes, tabulated values of the cumula-
tive distribution functions (CDF) for alpha and beta based on
S(a,b,T) datasets are stored at different temperatures. Whenever
a scattering reaction occurs in a region with a specified tempera-
ture, values of alpha and beta are sampled from the tabulated
CDF values at the corresponding temperature. Linear interpolation
is needed if sampled random numbers do not match the tabulated
values. The neutron’s outgoing energy and direction are then
determined by the sampled alpha and beta using Eqs. (2) and (3).
For our work, we develop an on-the-fly sampling method to obtain
the outgoing parameters without storing any tabulated CDF values
for alpha and beta at a temperature. The method is implemented
Table 1
ENDF/B-VII.1 Continuous Sða; b; TÞ file sizes for
selected moderator materials at room temperature.

Material File size [MB]

Graphite 24
Water 24.9
U in UO2 50
O2 in UO2 75
Zr in ZrH 56
H in ZrH 116
by examining the temperature dependences of alpha and beta at
selected discrete values of the CDFs in alpha and beta. The func-
tional temperature dependence is constructed through appropriate
regression models that provide the best fitting to the actual tem-
perature dependence based on S(a,b,T) data generated by NJOY at
a broad range of temperatures and incoming energies. Only fitting
coefficients in the selected regression model need to be stored for
Monte Carlo codes, eliminating the need to store continuous
S(a,b,T) datasets at all temperatures. These fitting coefficients
would be used to sample alpha and beta (and thus scattered energy
and scattering angle) at any temperature on-the-fly. In this
method, the key step is to find accurate models for alpha and beta
values as a function of temperature at equally-probable sampled
CDF values for all temperatures.

In the next section, the method of constructing the PDF/CDF
forms of alpha and beta that can be used to sample the scattered
neutron energy and angle of scatter at a single temperature is first
introduced. Then, these CDF forms at different temperatures and
different incoming energies are investigated for generally-used
light material nuclei. The temperature dependence of these CDFs
will be determined by fitting to several regression models. The
final functional form for the temperature dependence of alpha
and beta at different values of CDFs will be constructed based on
the best fitted regression model. On-the-fly sampling of the outgo-
ing parameters can be implemented using the obtained functional
forms.
2. Construction of PDFs/CDFs in alpha and beta based on
thermal scattering nuclear data

The procedure to construct alpha and beta PDFs/CDFs is based
on the direct sampling method used by Ballinger when he studied
thermal neutron scattering data (Ballinger, 1995). The construction
is performed by first converting the double differential cross sec-
tion from a function of E! E0;l; T to a function of a; b;T. This is
done through a Jacobian transformation,

rðE! E0;l; TÞ
rða;b; TÞ ¼ det

da=dE da=dl
db=dE db=dl

����
����: ð7Þ

The determinant of the Jacobian is readily found to be

det
da=dE da=dl
db=dE db=dl

����
���� ¼ 2

ffiffiffiffiffiffiffi
EE0
p

A0ðkTÞ2
: ð8Þ

Combining Eqs. (1), (7), and (8) gives

rða;b; TÞ ¼ rbA0kT
4E

e�
b
2Sða;b;TÞ: ð9Þ

In order to sample alpha and beta values based on Eq. (9) in the
Monte Carlo code, a joint probability density function of alpha and
beta should be constructed first. Dividing Eq. (9) by a total cross
section, defined as the integration of Eq. (9) over all alpha and beta
values, one obtains

f ða; bjE; TÞ ¼ rða; b; TÞR bmax
bmin

R amax

amin
rða;b; TÞdadb

: ð10Þ

The subscripts ‘‘min’’ and ‘‘max’’ correspond to minimum and
maximum values, respectively. The alpha and beta bounds are
determined using Eqs. (2) and (3). The minimum value of beta
occurs for a scattered neutron with zero scattered energy. Thus,
bmin ¼ �E=kT . In theory, the neutron can be upscattered to an infi-
nite secondary energy. When a neutron interacts with a vibrating
moderator atom, the positive momentum transfer that can occur
has no theoretical limit. The upper limit is material-dependent
and is usually chosen to increase until the CDF equals unity within
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some tolerance. In reality, it is unlikely the energy transfer will
exceed 20 kT. Therefore, bmax ¼ 20 is used in this work for both
graphite and water. Similarly, the alpha bounds are calculated
using the minimum and maximum angles of scatter. Thus,
amin and amax are calculated by setting l equal to 1 and �1 in Eq.
(3), respectively,

amin ¼
ð
ffiffiffi
E
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ bkT

p
Þ

2

A0kT
; ð11Þ

amax ¼
ð
ffiffiffi
E
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ bkT

p
Þ

2

A0kT
; ð12Þ

In Eqs. (11) and (12), the quantity Eþ bkT comes from solving
Eq. (3) for E0. Next, Eqs. (9) and (10) are combined to obtain

f ða;bjE; TÞ ¼ e�
b
2Sða;b; TÞR bmax

bmin

R amax

amin
e�

b
2Sða; b; TÞdadb

ð13Þ

This PDF is then broken up into two PDFs: one is a PDF in beta
and the other is a conditional PDF in alpha given beta,

gðbjE; TÞ ¼ e�
b
2

R amax

amin
Sða; b; TÞdaR bmax

bmin

R amax

amin
e�

b
2Sða; b; TÞdadb

; ð14Þ

hðajb; E; TÞ ¼ Sða; b; TÞR amax

amin
Sða;b; TÞda

: ð15Þ

Integrating Eqs. (14) and (15) over beta and alpha, respectively,
we obtain the CDFs in beta and alpha,

GðbjE; TÞ ¼
Z b

bmin

gðb0jE; TÞdb0; ð16Þ

Hðajb; E; TÞ ¼
Z a

amin

hða0jb; E; TÞda0: ð17Þ

From Eq. (16), we see the beta CDF is dependent on two vari-
ables: the target temperature and the incoming neutron energy.
The alpha CDF, however, is dependent on three variables: the tar-
get temperature, the incoming neutron energy and the energy
transfer (beta). Because of this extra variable dependence in the
alpha CDF, the storage of the alpha CDF data is quite large. How-
ever, because beta is a function of the incoming neutron energy,
it is repetitive to store the alpha CDF data on both an incoming
energy mesh and a beta mesh. Alternatively, for each beta, the
alpha CDF can be stored over the entire alpha mesh (instead of
Fig. 1. Beta PDF for graphite (left) and H in H2O
between the alpha bounds as calculated from the incoming neu-
tron energy), thus removing the incoming energy dependence. This
energy-independent alpha PDF is given by

ĥðajb; TÞ ¼ Sða; b; TÞR a1
0 Sða; b; TÞda

; ð18Þ

where a1 is the highest value in the alpha mesh. Eq. (18) is inte-
grated over alpha to obtain its CDF,

bHðajb; TÞ ¼ Z a

0
ĥða0jb; TÞda0: ð19Þ

Eq. (17) is rewritten in terms of Eq. (19) as

Hðajb; E; TÞ ¼
bHðajb; TÞ � bHðaminjb; TÞbHðamaxjb; TÞ � bHðaminjb; TÞ

ð20Þ

Eq. (20) shows that the alpha CDF data can be obtained by stor-
ing the energy-independent alpha CDF over the entire alpha mesh
and then choosing the appropriate portion of the data based on the
desired incoming neutron energy.

The procedure for sampling beta and alpha is:

(1) For the desired incoming neutron energy and temperature,
the beta bounds are calculated as previously described. This
establishes the range of relevant beta values that are used in
the S(a,b,T) data for that material. The alpha bounds are cal-
culated from Eqs. (11) and (12) for the incoming neutron
energy and each beta value in its mesh. The CDF is con-
structed from Eq. (16).

(2) A uniform pseudorandom number n is sampled in [0,1] and
set equal to the beta CDF, Eq. (16): n ¼ GðbjE; TÞ. The CDF
table is then searched for the random number and the sam-
pled beta is given by bðTÞ ¼ G�1ðnjE; TÞ.

(3) For the incoming neutron energy, temperature and the beta
that was just sampled, the alpha bounds are calculated from
Eqs. (11) and (12). The CDF is constructed from Eq. (19).

(4) bHðaminjb; TÞ and bHðamaxjb; TÞ are then calculated. A second
random number f is sampled in [0,1] and set equal to the
alpha CDF, Eq. (17): f ¼ Hðajb; E; TÞ. Eq. (20) is solved forbHðajb; TÞ to determine a new random number, f0:

h i
(right) a
bHðajb; TÞ ¼ f bHðamaxjb; TÞ � bHðaminjb; TÞ þ bHðaminjb; TÞ ¼ f0:

ð21Þ
The CDF table is searched for f0 and the sampled alpha is given
by aðTÞ ¼ bH�1ðf0jb; TÞ.
t Ein = 1 eV for various temperatures.
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Fig. 1 shows an example of the beta PDF for graphite (left) and H
in H2O (right) at Ein = 1 eV for various temperatures. Fig. 2 shows an
example of the alpha PDF for graphite (left) and H in H2O (right) at
b = 10 for various temperatures. The beta and alpha meshes were
taken from the NJOY version 2012 user manual (MacFarlane et al.,
2012) based on the original General Atomics evaluation.

Since the incoming energy is fixed to produce the beta PDF plots
shown in Fig. 1, negative values of beta represent neutron down-
scattering events while positive values of beta represent upscatter-
ing events. As temperature increases, the fraction of
downscattering at a fixed incoming energy slightly decreases. This
is a result of the atoms being more energetic and allowing more
energy to be transferred to the neutron.

In principle, after a thermal neutron scatters inelastically off an
isotope, based on the incoming energy and the material tempera-
ture, one can sample the outgoing energy and scattered angle
based on Eqs. (16) and (19). This is done by first sampling a value
of beta from Eq. (16) and then sampling a value of alpha from Eq.
(19). From alpha and beta, the scattered energy E0 and cosine of the
scattering angle l can be calculated from Eqs. (2) and (3),

E0s ¼ Eþ bskT; ð22Þ
Fig. 2. Alpha PDF for graphite (left) and H in H2

Table 2
Mesh values for CDF-dependent parameters for graphite.

Parameter # of
Mesh
points

Mesh values

Incoming energy, Ein

[eV]
106 1.00E�5, 1.78E�5, 2.50E�5, 3.50E�5, 5.00E�5, 7.0

6.15E�4, 7.50E�4, 8.70E�4, 1.01E-3, 1.23E-3, 1.50
5.00E�3, 5.60E�3, 6.33E�3, 7.20E�3, 8.10E�3, 9.1
1.62E�2, 1.82E�2, 1.99E�2, 2.05E�2, 2.15E�2, 2.
5.00E-2, 5.69E-2, 6.25E-2, 6.90E-2, 7.50E-2, 8.20E-
1.72E-1, 1.84E-1, 2.00E-1, 2.28E-1, 2.51E-1, 2.71E-
6.25E-1, 7.00E-1, 7.80E-1, 8.60E-1, 9.50E-1, 1.05, 1

Energy transfer, b 96 0, 0.10081, 0.20162, 0.30244, 0.40325, 0.50406, 0.
1.613, 1.7138, 1.8146, 1.9154, 2.0162, 2.117, 2.217
3.3268, 3.4276, 3.5284, 3.6292, 3.73, 3.8308, 3.931
5.6087, 5.7347, 5.8608, 5.999, 6.1371, 6.2885, 6.44
8.9753, 9.5505, 10.181, 10.873, 11.63, 12.459, 13.3
31.453, 34.187, 37.182, 40.466, 45, 50, 55, 60, 65,

Temperature, T [K] 69 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 5
975, 1000, 1025, 1050, 1075, 1100, 1125, 1150, 117
1525, 1550, 1575, 1600, 1625, 1650, 1675, 1700, 1

CDF Probability 39 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225
0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75, 0.775, 0.8,
ls ¼
Eþ E0s � asA0kTffiffiffiffiffiffiffi

EE0s
q ; ð23Þ

where the subscript ‘‘s’’ indicates a sampled value. In practice, tab-
ulated data are used for sampling beta and alpha. Eqs. (16) and (19)
are the functional forms that one uses to tabulate values of beta and
alpha at discrete CDF values. The tabular form can be easily utilized
in Monte Carlo codes. The tabulation is performed at each incoming
energy value and at each temperature for the beta CDF table. Simi-
larly, the tabulation is performed at each beta value and at each
temperature for the alpha CDF table. Such a format of data storage
results in high computer memory usage if the range of temperature
variation in a physical problem is too broad. These tabulated data
can be expressed in the following form

GiðbijEk; TlÞ and bHjðajjbi; TlÞ ð24Þ

i ¼ 1;2; . . . ; I

j ¼ 1;2; . . . ; J

k ¼ 1;2; . . . ;K
O (right) at b = 10 for various temperatures.

0E�5, 1.00E�4, 1.26E-4, 2.00E-4, 2.53E-4, 2.97E-4, 3.50E-4, 4.20E-4, 5.06E-4,
E-3, 1.80E-3, 2.03E-3, 2.28E-3, 2.60E-3, 3.00E-3, 3.50E-3, 4.05E-3, 4.50E-3,
1E�3, 1.00E�2, 1.06E�2, 1.15E�2, 1.24E�2, 1.33E�2, 1.42E�2, 1.50E�2,

28E�2, 2.53E�2, 2.80E-2, 3.06E-2, 3.38E-2, 3.65E-2, 3.95E-2, 4.28E-2, 4.65E-2,
2, 9.00E-2, 9.60E-2, 1.04E-1, 1.12E-1, 1.20E-1, 1.28E-1, 1.36E-1, 1.46E-1, 1.60E-1,
1, 2.91E-1, 3.01E-1, 3.21E-1, 3.58E-1, 3.90E-1, 4.17E-1, 4.50E-1, 5.03E-1, 5.60E-1,
.16, 1.28, 1.42, 1.55, 1.70, 1.855, 2.02, 2.18, 2.36, 2.59, 2.855, 3.12, 3.42, 3.75

60487, 0.70568, 0.8065, 0.90731, 1.0081, 1.1089, 1.2097, 1.3106, 1.4114, 1.5122,
9, 2.3187, 2.4195, 2.5203, 2.6211, 2.7219, 2.8227, 2.9235, 3.0244, 3.1252, 3.226,
7, 4.0325, 4.1333, 4.2438, 4.3648, 4.4976, 4.6431, 4.8025, 4.9772, 5.1687, 5.3786,
, 6.6059, 6.7718, 6.9538, 7.1357, 7.335, 7.5344, 7.7529, 7.9714, 8.2109, 8.4504,
7, 14.367, 15.46, 16.657, 17.97, 19.409, 20.986, 22.714, 24.608, 26.685, 28.96,
70, 75, 80

50, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950,
5, 1200, 1225, 1250, 1275, 1300, 1325, 1350, 1375, 1400, 1425, 1450, 1475, 1500,
725, 1750, 1775, 1800, 1825, 1850, 1875, 1900, 1925, 1950, 1975, 2000
, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5, 0.525, 0.55, 0.575,
0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975



Table 3
Mesh values for CDF-dependent parameters for water.

Parameter # of Mesh
points

Mesh values

Incoming energy,
Ein [eV]

95 1.00E-5, 1.78E-5, 2.50E-5, 3.50E-5, 5.0E-5, 7.00E-5, 1.00E-4, 1.26E-4, 2.00E-4, 2.53E-4, 2.97E-4, 3.50E-4, 4.20E-4, 5.06E-4, 6.15E-5,
7.50E-4, 8.70E-4, 1.01E-3, 1.23E-3, 1.50E-3, 1.80E-3, 2.03E-3, 2.28E-3, 2.60E-3, 3.00E-3, 3.50E-3, 4.05E-3, 4.50E-3, 5.00E-3, 5.60E-
3, 6.33E-3, 7.20E-3, 8.10E-3, 9.11E-3, 1.00E-2, 1.06E-2, 1.15E-2, 1.24E-2, 1.33E-2, 1.42E-2, 1.50E-2, 1.62E-2, 1.82E-2, 1.99E-2,
2.05E-2, 2.15E-2, 2.28E-2, 2.53E-2, 2.80E-2, 3.06E-2, 3.38E-2, 3.65E-2, 3.95E-2, 4.28E-2, 4.65E-2, 5.00E-2, 5.69E-2, 6.25E-2, 6.90E-
2, 7.50E-2, 8.20E-2, 9.00E-2, 9.60E-2, 1.04E-1, 1.12E-1, 1.20E-1, 1.28E-1, 1.36E-1, 1.46E-1, 1.60E-1, 1.72E-1, 1.84E-1, 2.00E-1,
2.28E-1, 2.51E-1, 2.71E-1, 2.91E-1, 3.01E-1, 3.21E-1, 3.58E-1, 3.90E-1, 4.17E-1, 4.50E-1, 5.03E-1, 5.60E-1, 6.25E-1, 7.00E-1, 7.80E-
1, 8.60E-1, 9.50E-1, 1.05, 1.16, 1.28, 1.42, 1.55

Energy transfer, b 95 0, 0.006375, 0.01275, 0.0255, 0.03825, 0.051, 0.06575, 0.0806495, 0.120974, 0.161299, 0.241949, 0.322598, 0.403248, 0.483897,
0.564547, 0.645197, 0.725846, 0.806496, 0.887145, 0.967795, 1.04844, 1.12909, 1.20974, 1.29039, 1.37104, 1.45169, 1.53234,
1.61299, 1.69364, 1.77429, 1.85494, 1.93559, 2.01624, 2.09689, 2.17754, 2.25819, 2.33884, 2.41949, 2.50014, 2.58079, 2.6695,
2.76709, 2.87445, 2.9925, 3.12235, 3.2653, 3.42247, 3.59536, 3.78549, 3.99467, 4.22473, 4.47787, 4.75631, 5.06258, 5.39939,
5.76997, 6.17766, 6.62607, 7.11924, 7.66181, 8.25862, 8.91511, 9.63722, 10.432, 11.3051, 12.2668, 13.3243, 14.4867, 15.766,
17.1733, 18.7218, 20.4245, 22.2976, 24.3572, 26.6234, 29.1165, 31.8586, 34.8759, 38.1936, 41.844, 45.8583, 50.2749, 55.1331,
60.4771, 66.3554, 72.8215, 79.9338, 90, 100, 110, 120, 130, 140, 150, 160

Temperature, T [K] 71 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560,
570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830,
840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000

CDF Probability 39 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475, 0.5, 0.525, 0.55,
0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975
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l ¼ 1;2; . . . ; L:

Both discrete CDF sets in alpha and beta are temperature dependent
and a total of L sets of tables are needed. L can be very large if the
temperature variation is very sharp and the range of the variation
is large in the analyzed problems. To reduce the memory require-
ment and to provide more convenient usage for Monte Carlo codes,
we propose a different data storage format that Monte Carlo codes
can easily implement on-the-fly to sample outgoing energy and
angle at any temperature as needed. The idea is to remove the Ti

mesh dependence for G and bH in Eq. (23) and instead move the tem-
perature dependence to beta and alpha at each value of G and bH.
Specifically, the new format is

GiðbðTÞjEkÞ and bHjðajðTÞjbiÞ ð25Þ
i ¼ 1;2; . . . ; I
j ¼ 1;2; . . . ; J
k ¼ 1;2; . . . ;K:

If an accurate functional expansion in T for beta and alpha can
be found at discrete values of G and bH, the storage of the data sets
can be greatly decreased as long as the order of the function is
Fig. 3. Temperature dependence of be
much smaller than L. We will first investigate the temperature
dependence of alpha and beta based on the actual library data.
Then, we will study the functional fitting of these dependencies.
3. Analysis of temperature dependence of alpha and beta CDFs

The temperature dependence of the beta CDF was examined at
discrete CDF probability lines in the range [0,1] and on a mesh of
incoming neutron energies in the thermal range. In total, there
were four variables considered in the analysis: Ein, b, T and Pb,
where Pb is the beta CDF probability. Likewise, the temperature
dependence of the alpha CDF was examined at discrete CDF prob-
ability lines and on a mesh of beta values. The alpha CDF temper-
ature analysis consists of four variables: b, a, T and Pa, where Pa is
the alpha CDF probability.

To examine the temperature dependences of the beta CDF, uni-
form meshes of Ein and Pb are chosen. Likewise, the temperature
dependence of the alpha CDF is examined on uniform beta and
Pa meshes. Tables 2 and 3 detail the meshes used for the CDF tem-
perature dependence for graphite and water, respectively.

In ENDF/B-VII.1, the incoming energy mesh for both graphite
and H in H2O contains 116 values in the range [1E-5, 9.15] eV. In
this study, the maximum energy used from this original mesh is
determined from the maximum value of beta in the beta mesh
(where Emax = bkT and T is room temperature). A total of 96 beta
ta CDF for graphite for Ein = 1 eV.



Fig. 4. Temperature dependence of alpha CDF for graphite for b = 10.
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values are chosen in the range [0,80] for graphite and 95 beta val-
ues in the range [0,160] for H in H2O, consistent with the meshes
ENDF (CSEWG and ENDF-6 Formats Manual. Broo, 2011) uses for
graphite and H in H2O. Only positive values of beta are stored since
S(a,b,T) is symmetric about beta for both graphite and H in H2O. For
both the beta and alpha CDFs for both moderators, 39 CDF proba-
bility lines in the range [0,1] are chosen.

Functional expansions based on different regression models are
examined to fit the b(T) and a(T) data at different values of alpha
and beta CDFs. Based on the meshes described in the previous par-
agraph, the total number of fitting coefficients that needs to be
stored for b(T) and a(T) are, respectively,

Nb ¼
106� 39� ðnþ 1Þ ¼ 4134ðnþ 1Þ for graphite
95� 39� ðnþ 1Þ ¼ 3705ðnþ 1Þ for H in H2O0

�
ð26Þ

Na ¼
96� 39� ðmþ 1Þ ¼ 3744ðmþ 1Þ for graphite
95� 39� ðmþ 1Þ ¼ 3705ðmþ 1Þ for H in H2O0

�
ð27Þ
Table 4
Fits for b(T) and a(T) analysis.

Fit number Fit Fit number Fit

1 PN
n¼0anTn 5 PN

n¼0anðln TÞn

2 PN
n¼0anT�n 6 PN

n¼0anðln TÞ�n

3 PN
n¼0anð

ffiffiffi
T
p
Þn 7 PN

n¼0anð
ffiffiffiffiffiffiffiffi
ln T
p

Þn

4 PN
n¼0anð

ffiffiffi
T
p
Þ�n 8 PN

n¼0anð
ffiffiffiffiffiffiffiffi
ln T
p

Þ�n

Fig. 5. Beta CDF probability-averaged RMSE as a function of incoming energy for s
where n and m are the order of the functional expansion for the b(T)
and a(T) fits, respectively.

The temperature dependence was performed on a temperature
mesh of 69 values in the range [300,2000] K at 25 K increments for
graphite and on a mesh of 71 values in the range [300,1000] K at
10 K increments for H in H2O. A code was written to build the CDFs
for beta and alpha at each temperature in the mesh from S(a,b,T)
data obtained from NJOY. The b(T) data are then outputted at each
Ein and Pb in their respective meshes. Likewise, the a(T) data are
outputted at each beta and Pa in their respective meshes. A visual-
ization of this procedure for graphite is shown in Fig. 3 for the beta
data and in Fig. 4 for the alpha data. In the figures, only five tem-
peratures (300 K, 650 K, 1000 K, 1500 K and 2000 K) are shown
along with four probability lines (0.2, 0.4, 0.6 and 0.8) for one
incoming energy value (1 eV) and one beta value (10). This is for
visualization purposes only. In actuality, many more temperatures,
probability lines, incoming energy values and beta values are used
for the study as was described earlier in this section.

Along each CDF probability line, the temperature dependence
can be examined through fitting functions. The next section com-
pares different temperature fitting functions to the alpha and beta
CDFs for two moderator materials: graphite and H bound in H2O.
4. Functional fittings of temperature dependence of alpha and
beta for materials of graphite and water

The previous section detailed the procedures for constructing
the alpha and beta PDFs/CDFs for each temperature and each
econd-order functional expansion fits for graphite (left) and H in H2O (right).



Fig. 6. Alpha CDF probability-averaged RMSE as a function of beta for fourth-order functional expansion fits for graphite (left) and H in H2O (right).

Table 5
Average RMSE for b(T) and a(T) data for graphite.

Fit # Beta

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 0.1198 0.0552 0.0269 0.0135 0.0070 0.0039 0.0024 0.0018 0.0015 0.0014
2 0.0208 0.0059 0.0031 0.0024 0.0020 0.0018 0.0016 0.0015 0.0014 0.0013
3 0.0934 0.0329 0.0119 0.0048 0.0025 0.0018 0.0016 0.0014 0.0014 0.0013
4 0.0421 0.0051 0.0030 0.0023 0.0019 0.0017 0.0015 0.0014 0.0013 0.0013
5 0.0661 0.0154 0.0042 0.0023 0.0019 0.0017 0.0015 0.0014 0.0013 0.0013
6 0.0511 0.0077 0.0030 0.0023 0.0019 0.0017 0.0015 0.0014 0.0013 0.0014
7 0.0622 0.0132 0.0036 0.0023 0.0019 0.0017 0.0015 0.0015 0.0014 0.0014
8 0.0548 0.0093 0.0030 0.0023 0.0019 0.0017 0.0015 0.0015 0.0014 0.0014

Fit # Alpha

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 0.1866 0.0986 0.0527 0.0295 0.0185 0.0146 0.0132 0.0121 0.0110 0.0101
2 0.0480 0.0234 0.0175 0.0142 0.0123 0.0107 0.0093 0.0082 0.0073 0.0065
3 0.1571 0.0637 0.0289 0.0174 0.0144 0.0129 0.0118 0.0106 0.0096 0.0086
4 0.0844 0.0241 0.0177 0.0149 0.0127 0.0112 0.0098 0.0087 0.0077 0.0068
5 0.1224 0.0355 0.0192 0.0156 0.0134 0.0120 0.0107 0.0095 0.0084 0.0085
6 0.0997 0.0262 0.0180 0.0153 0.0129 0.0115 0.0102 0.0089 0.0079 0.0080
7 0.1169 0.0324 0.0187 0.0155 0.0133 0.0118 0.0105 0.0106 0.0094 0.0095
8 0.1055 0.0278 0.0182 0.0154 0.0130 0.0116 0.0103 0.0103 0.0091 0.0092

Table 6
Average RMSE for b(T) and a(T) data for H in H2O.

Fit # Beta

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 0.0680 0.0213 0.0073 0.0032 0.0022 0.0019 0.0019 0.0018 0.0018 0.0018
2 0.0104 0.0044 0.0028 0.0022 0.0020 0.0018 0.0018 0.0018 0.0018 0.0017
3 0.0526 0.0122 0.0038 0.0024 0.0020 0.0019 0.0018 0.0018 0.0018 0.0018
4 0.0216 0.0041 0.0028 0.0022 0.0019 0.0018 0.0018 0.0018 0.0018 0.0017
5 0.0370 0.0060 0.0028 0.0022 0.0020 0.0019 0.0018 0.0018 0.0018 0.0018
6 0.0271 0.0042 0.0028 0.0022 0.0020 0.0018 0.0018 0.0018 0.0018 0.0018
7 0.0345 0.0054 0.0028 0.0022 0.0020 0.0019 0.0018 0.0018 0.0018 0.0018
8 0.0295 0.0044 0.0028 0.0022 0.0020 0.0018 0.0018 0.0018 0.0018 0.0018

Fit # Alpha

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 0.2539 0.1176 0.0782 0.0651 0.0597 0.0560 0.0523 0.0487 0.0454 0.0426
2 0.1018 0.0790 0.0666 0.0578 0.0516 0.0464 0.0421 0.0391 0.0366 0.0339
3 0.2080 0.0951 0.0708 0.0623 0.0576 0.0536 0.0493 0.0454 0.0420 0.0394
4 0.1215 0.0799 0.0672 0.0592 0.0536 0.0485 0.0438 0.0402 0.0378 0.0357
5 0.1620 0.0833 0.0682 0.0606 0.0557 0.0510 0.0464 0.0424 0.0428 0.0433
6 0.1350 0.0805 0.0675 0.0597 0.0544 0.0494 0.0447 0.0409 0.0411 0.0414
7 0.1550 0.0822 0.0680 0.0604 0.0554 0.0506 0.0459 0.0463 0.0468 0.0472
8 0.1414 0.0809 0.0676 0.0600 0.0547 0.0498 0.0451 0.0454 0.0457 0.0460
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incoming energy (or beta) value in its mesh. The temperature
dependence of these CDFs is analyzed on appropriately-chosen
CDF probability lines. To determine the best fit for the data, eight
different regression models were considered, shown in Table 4.
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In Table 4, the an’s are the fitting coefficients and N is the order
of the functional expansion. To determine the best fit for b(T) and
a(T), the root-mean-square error (RMSE) is calculated at every CDF
probability, incoming energy, and beta value. The RMSE is a com-
mon measurement used to compare estimated values from a
model or functional fit to a true value. The closer RMSE is to zero,
Fig. 8. Regression order vs. Average RMSE for H

Fig. 9. Comparison of estimated and true CDFs for graphite, T = 887.5

Fig. 7. Regression order vs. Average RMSE for
the better the accuracy of the estimated values. The RMSE is given
by Frank and Todeschini (1994)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNT
i¼1ðhi � ĥiÞ

2

NT � ðN þ 1Þ

vuut
; ð28Þ
in H2O, left: beta data, right: alpha data.

K. Left: beta CDF, Ein = 1.39E-5 eV, right: alpha CDF, b = 6.36426.

graphite, left: beta data, right: alpha data.



Fig. 11. Relative error between estimated and true beta (left) and alpha (right) for graphite, Left: beta CDF, Ein = 1.39E-5 eV, T = 887.5 K, right: alpha CDF, b = 6.36426, T = 887.5 K.

Fig. 12. Relative error between estimated and true beta (left) and alpha (right) for H in H2O, Left: beta CDF, Ein = 1.35 eV, T = 895 K, right: alpha CDF, b = 63.41625, T = 895 K.

Table 7
Fitting coefficient testing: mesh points used for graphite and water.

Incoming Energy [eV] Beta Temperature [K]

Graphite Water Graphite Water Graphite Water

0.0044 0.0008 1.4252 8.5899 378.08 406.97
0.0743 0.0267 35.7380 32.1844 809.61 681.82
0.3719 0.0858 55.3908 72.6508 1057.46 793.70
1.1929 0.2993 65.7804 110.4076 1506.88 851.48
3.4937 0.8021 74.4940 147.1760 1919.13 920.36

Fig. 10. Comparison of estimated and true CDFs for H in H2O, T = 895 K. Left: beta CDF, Ein = 1.35 eV, right: alpha CDF, b = 63.41625.
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where hi is the true value of beta or alpha at the current temper-
ature, ĥi is the estimated value of beta or alpha at the current tem-
perature from the fitting coefficients and NT is the number of
temperature values used in the analysis. The true value of beta
and alpha is found by running the LEAPR module of NJOY at the
desired temperature to obtain the S(a,b,T) data. In addition to the
temperature, LEAPR requires a uniform energy transfer grid along
with values of the phonon frequency spectrum at each energy
transfer. An appropriate alpha/beta grid must also be input. Then,
Eqs. (14) and (18) are used to build the true PDFs. These RMSE
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values are then averaged over the 39 CDF probability lines. Fig. 5
shows the probability-averaged RMSE for each fit as a function of
the incoming energy mesh for a second-order functional expansion
for the b(T) data for graphite (left) and H in H2O (right). A second-
order functional expansion is shown as an example. However,
orders from one to ten were examined in the study.

Fig. 6 shows the probability-averaged RMSE for each fit as a
function of the beta mesh for a fourth-order functional expansion
Fig. 13. Comparison of estimated and true beta CDFs for graphit
fit for the a(T) data for graphite (left) and H in H2O (right). A
fourth-order functional expansion is shown as an example.
However, orders from one to ten were examined in the study.

From Figs. 5 and 6, there is a lot of fluctuation in the
probability-averaged RMSE over the entire incoming energy and
beta meshes. It was decided to average these values to obtain
one RMSE value for each fit. Tables 5 and 6 show these averaged
RMSE for the b(T) and a(T) data for functional expansion orders
e for various temperatures and incoming neutron energies.



Fig. 14. Comparison of estimated and true alpha CDFs for graphite for various temperatures and beta values.
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one through ten for graphite and H in H2O, respectively. The
lowest RMSE for a particular functional expansion order is
bolded.

The best fit is the one with the lowest average RMSE. As the
order of the functional expansion increases, the average RMSE
decreases, but the storage of more coefficients is necessary. To
determine which order is best to use, the change in the average
RMSE between adjacent functional expansion orders for a specific
fit should be small. The order of the regression model versus the
average RMSE is shown for the graphite data in Fig. 7 and for H
in H2O in Fig. 8.

From Tables 5 and 6 and Figs. 7 and 8,
P2

n¼0anð
ffiffiffi
T
p
Þ�n

(Fit 4) is
chosen for the b(T) data over the entire incoming energy mesh
for both graphite and H in H2O (with averaged RMSE of 0.0051
and 0.0041, respectively). Likewise,

P
n ¼ 04anT�n (Fit 2) is chosen

for the a(T) data over the entire beta mesh for both graphite and H



Fig. 15. Comparison of estimated and true beta CDFs for H in H2O for various temperatures and incoming neutron energies.
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in H2O (with averaged RMSE of 0.0142 and 0.0578, respectively).
The beta coefficient files for graphite and H in H2O have a total
storage of 190 kB and 168 kB, respectively. The alpha coefficient
files for graphite and H in H2O have a total storage of 271 kB and
272 kB, respectively. In total, the coefficient files for graphite and
H in H2O only require 461 kB and 440 kB, respectively. Storing
coefficients is beneficial because they can be used to sample outgo-
ing energy and cosine of the scattering angle for any temperature
and any incoming neutron energy.
5. Sampling testing based on fitted functional expansions

The beta coefficients are stored at discrete CDF probability val-
ues and at discrete incoming energies. Similarly, the alpha coeffi-
cients are stored at discrete CDF probability values and at discrete
beta values. Of course, in actual sampling, values of Ein, beta and
CDF probability are encountered that the coefficients are not
stored for. When this occurs, linear interpolation is performed
between sets to the desired value.



Fig. 16. Comparison of estimated and true alpha CDFs for H in H2O for various temperatures and beta values.
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To sample alpha and beta from the coefficients given an incom-
ing neutron energy and temperature, the beta coefficient file is
searched for the two closest incoming energy sets, E1 and E2 such
that E1 < Ein < E2. Then, a uniform pseudorandom number, n1, in
[0,1] is sampled and the beta coefficient file is searched for the
two closest CDF probability sets, Pb1 and Pb2 such that Pb1 < n1 < Pb2.
At these four sets (E1, E2, Pb1 and Pb2), the temperature and the
coefficients in these sets are used to calculate a value of beta. Then,
linear interpolation is done to the true Ein and n1. From this sam-
pled beta value (bs), the alpha coefficient file is searched for the
two closest beta sets b1 and b2 such that b1 < n2 < b2. Then, another
uniform pseudorandom number, n2, in [0,1] is sampled and the
alpha coefficient file is searched for the two closest CDF probability
sets Pa1 and Pa2 such that Pa1 < n2 < Pa2. Like before, linear interpo-
lation is performed between the sets to determine the sampled
value of alpha.
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To test the goodness of these coefficients, a simple Monte Carlo
code was written to sample alpha and beta many times using only
the coefficient files. The ranges of possible alpha and beta values
were each divided into equally spaced bins, Dt. For example, the
beta range for graphite extends from �80 to 80. This range was
divided into 1600 equally-spaced bins of width Dt = 0.1, while
the beta range for H in H2O extends from �160 to 160 and was
divided into 1600 equally-spaced bins of width Dt = 0.2. The alpha
range for graphite extends from 0 to 60. This range was also
divided into 1600 equally-spaced bins of width Dt = 0.0375, while
the alpha range for H in H2O extends from 0 to 321.29 and was
divided into 1600 equally-spaced bins of width Dt = 0.201. The rel-
ative frequency of each sample is determined by

fi ¼
Ni

NDt
; ð29Þ

where Ni is the number of samples that fall into bin i. As the number
of samples run in the Monte Carlo code increases, a plot of the mid-
point of each bin versus the relative frequency approaches the true
PDF. Integrating over this produces the CDF.

To test the beta coefficients, it was decided to choose an incom-
ing energy not contained in the coefficient file. Since linear interpo-
lation is performed between energy sets to the true incoming
energy, it is best to choose an incoming energy that is halfway
between two adjacent energy sets to test the effectiveness of the
linear interpolation. Also, the incoming energy chosen should be
such that its two adjacent energy sets have the largest RMSE for
the chosen fit (to test the goodness of the coefficients).

For graphite, from Fig. 5 for Fit 4, the largest average RMSE
occurs for E1 = 1E-5 eV and E2 = 1.78E-5 eV. The energy halfway
between these two values is chosen for the analysis, Ein = 1.39E-
5 eV. A similar approach is taken to test the alpha coefficients.
The largest average RMSE occurs for b1 = 6.28855 and
b2 = 6.43997. The beta value halfway between these two values is
chosen for the analysis, b = 6.36426. Finally, a temperature of
887.5 K is chosen since the coefficients were determined at dis-
crete temperatures, two of which include 875 K and 900 K. The
value of 887.5 K is halfway between these temperatures.

For H in H2O, from Fig. 5 for Fit 4, the largest average RMSE
occurs for E1 = 1.28 eV and E2 = 1.42 eV. The energy halfway
between these two values is chosen for the analysis, Ein = 1.35 eV.
For the alpha coefficients, the largest average RMSE occurs for
b1 = 60.4771 and b2 = 66.3554. The beta halfway between these
two values is chosen for the analysis, b = 63.41625. Finally, a tem-
perature of 895 K is chosen, which is halfway between the temper-
atures 890 K and 900 K (two of the temperatures used to
determine the fitting coefficients).

Figs. 9 and 10 compare the estimated beta CDF (left) and alpha
CDF (right) for graphite and H in H2O, respectively, found from the
fitting coefficients to the true beta and alpha CDF, respectively, cal-
culated from the true S(a,b,T) data and constructed using Eqs. (16)
and (19).

The largest relative errors occur for very high CDF probability
values as shown in Figs. 11 and 12. This is because the smallest
and largest CDF probability lines chosen for the temperature anal-
ysis are 0.025 and 0.975 and the true CDF data has many beta/
alpha values at CDF values between 0 and 0.025 as well as between
0.975 and 1.0. The standard deviation for the number of sampled
values that fall inside these bins is quite large, resulting in the large
relative errors. If the number of samples run is increased suffi-
ciently, more of the sampled values will fall into these bins and
better agreement will be observed. For graphite, the largest relative
errors in the majority of the CDF region, [0.025,0.9] is 0.029 for
beta and 0.141 for alpha. For water, the largest relative errors in
this CDF region are 0.155 for beta and 0.346 for alpha.
Next, the effectiveness of the fitting coefficients is shown over
the range of incoming neutron energies, beta values and tempera-
tures. Uniform random mesh points were chosen for both graphite
and water and the coefficients were tested at these values. Table 7
shows the chosen parameters for graphite and water.

The beta CDFs were tested using the temperatures and incom-
ing energies listed in Table 7 while the alpha CDFs were testing
using the temperatures and beta values listed in the table. Figs. 13
and 14 compare the estimated beta and alpha CDFs, respectively,
for graphite found from the fitting coefficients to the true CDFs cal-
culated from the true S(a,b,T) data. Figs. 15 and 16 show the com-
parison for H in H2O. In these figures, the dotted lines represent the
estimated CDF from the fitting coefficients while the markers rep-
resent the true CDF data.

These results show that the fitting coefficients can accurately
reproduce the alpha and beta CDFs even for the most sensitive values
of energy, beta and temperature. Some discrepancy is observed at
very low and very high CDF probability values, indicating that more
probability lines should be used. Therefore, these fitting coefficients
are suitable to sample outgoing energy and cosine of the scattering
angle for graphite for any thermal energy and any temperature.

6. Conclusions

On-the-fly sampling methods have been developed in recent
years to reduce the storage of cross section data for Monte Carlo
simulations. For the most important resonance absorber nuclides,
an on-the-fly Doppler broadening method has been developed to
obtain the cross section at the desired temperature and incoming
energy from pre-stored zero-temperature cross section data and
appropriate functional expansions. A stochastic method account-
ing for the thermal motion of target nuclei on-the-fly has also
recently been implemented into the Monte Carlo code Serpent. In
the epithermal energy range, both the DBRC method and WCM
have been developed to on-the-fly sample a neutron’s outgoing
energy and angle after a scattering reaction in the center-of-mass
frame. More recently, a method has been developed to on-the-fly
generate the moments of the differential scattering PDF for any
temperature in the laboratory frame.

These methods are not applicable for thermal inelastic neutron
scattering data due to the complicated nature of chemical and
binding effects at low neutron energies. To address this, PDFs
and CDFs of energy and momentum transfer were constructed
from the methods of Ballinger and the temperature dependence
of these CDFs was examined along lines of equal probability. For
the beta CDF, second-order functional expansions with the regres-
sion model using 1=

ffiffiffi
T
p

as the basis provided the best fit for the
temperature dependence over the incoming energy mesh with
an averaged RMSE of 0.0051 for graphite and 0.0041 for H in
H2O. For the alpha CDF, fourth-order functional expansions in
1=T provided the best fit for the temperature dependence over
the beta mesh with an averaged RMSE of 0.0142 for graphite and
0.0578 for H in H2O.

Sampling from the coefficients of these functional expansions
was tested with a simple Monte Carlo code for the values of incom-
ing energy and beta that were most sensitive to the chosen fits. It
was shown that these coefficients can accurately sample values of
the energy and momentum transfer for graphite with only minor
errors. These observed errors in the sampled values have not yet
been tested on reactor parameters like reaction rates, k-effective,
etc. A future study will test the effectiveness of these coefficients
in the thermal range in a realistic Monte Carlo problem. The total
storage space of all coefficients is 461 kB for graphite and 440 kB
for H in H2O and can be used to sample outgoing energy and angle
for any incoming energy and any temperature. This is a significant
improvement of the current method which requires around 24 MB
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of storage per temperature. The coefficients are more compact than
the current ACE data and can be combined with the on-the-fly
Doppler broadening scheme in the future to complete the model-
ing of temperature effects for Monte Carlo codes.
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