DE LA RECHERCHE À L'INDUSTRIE

DISCUSSIONS ON LIGHT WATER

G. NOGUERE, J.P. SCOTTA, P. TAMAGNO, G. TRUCHET

www.cea.fr

16-18 May 2017

Description of the method implemented in the CONRAD code for calculating covariance matrix between model parameters \Rightarrow LEAPR parameters (JEFF-3.1.1)

		-
	Contents lists available at ScienceDirect	annals of NUCLEAR ENERGY
	Annals of Nuclear Energy	
ELSEVIER	journal homepage: www.elsevier.com/locate/anucene	Sizeality 1

Annals of Nuclear Energy 104 (2017) 132-145

Covariance matrices of the hydrogen neutron cross sections bound in light water for the JEFF-3.1.1 neutron library

G. Noguere^{*}, J.P. Scotta, C. De Saint Jean, P. Archier CEA, DEN, DER Cadarache, F-13108 Saint Paul les Durance, France

Full covariance matrix on the elastic scattering cross section of H1 in H2O from thermal to MeV energy range by using **contraints on the bound cross section**

Because of the size of the $S(\alpha,\beta)$ matrix, it is not possible to create a full covariance matrix between the $S(\alpha,\beta) \Rightarrow$ we use a multigroup representation $S(\alpha_g\beta)$

Generation of covariance matrix between $S(\langle \alpha \rangle, \beta)$

The extreme multigroup representation is to average the $S(\alpha,\beta)$ over the α grid \Rightarrow **one-group description** $S(\langle \alpha \rangle,\beta)$

DE LA RECHERCHE À L'INDUSTRIE

Cea

Covariance matrix for the elastic cross section

From LEAPR parameters

From S($\langle \alpha \rangle$, β) matrix

From S(α_g , β) matrix

0.0

In theory, the IFP method implemented in the Monte-Carlo code TRIPOLI4 can be used to calculate the sensitivity to the elastic cross section and to the $S(\alpha_{q,\beta})$ or $S(\langle \alpha \rangle,\beta)$ elements

In practice, we are limited by the convergence of the IFP method for the $S(\alpha_{g,\beta})$ or $S(\langle \alpha \rangle,\beta)$ elements

 \Rightarrow For the moment, the IFP method of TRIPOLI4 can only be applied to the <u>elastic cross</u> section

In theory, the IFP method implemented in the Monte-Carlo code TRIPOLI4 can be used to calculate the sensitivity to the elastic cross section and to the $S(\alpha_{q,\beta})$ or $S(\langle \alpha \rangle,\beta)$ elements

In practice, we are limited by the convergence of the IFP method for the $S(\alpha_{g,\beta})$ or $S(\langle \alpha \rangle,\beta)$ elements

 \Rightarrow For the moment, the IFP method of TRIPOLI4 can only be applied to the <u>elastic cross</u> section

	IFP .	Origin of the covariance matrix					
IFP sensitivity	uncertainty	LEAPR parameters	S((α),β)	$S(\alpha_g,\beta)$			
sensitivity S ₁ (σ _n)	±70 pcm	114 pcm	159 pcm	125 pcm			
sensitivity S₂(σ _n)	\pm 10 pcm	130 pcm	161 pcm	132 pcm			

The three covariance matrices provide nealy equivalent results close to 140 pcm

Propagation of the uncertainties : TMC method – PST001.1

Máthada da propagation	Origin of the covariance matrix				
Methode de propagation	$S(\langle lpha angle, eta)$	$S(\alpha_g,\beta)$			
Sensibilité IFP S₂(σ _n)	161 pcm	132 pcm			
Total Monte Carlo	213 pcm	184 pcm			

From S($\langle \alpha \rangle, \beta$) matrix

IFP and TMC provide nearly equivalent results \Rightarrow difference of 50 pcm

Decomposition of the keff uncertainty without the $S(\alpha,\beta)$ contribution

Isotope	FISSION	CAPTURE	ELASTIC	INELASTIC	NXN	NU	DISTRIBUTION	DISTRIBUTION_TH	TOTAL
H1		150	17						151
B10		26							26
O16		97	14	2					98
Zr90		11	72	4					72
Zr91		27	30	2					40
Zr92		27	20	2					33
Zr94		2	8	2					8
Zr96		2	6						6
U234	1	6	2						6
U235	104	174	13			276		142	371
U236		1							1
U238	29	165	83	38	18	32	9		195
TOTAL	108	303	118	39	18	277	9	142	465

Decomposition of the keff uncertainty with the $S(\alpha,\beta)$ contribution

Isotope	FISSION	CAPTURE	ELASTIC	INELASTIC	NXN	NU	DISTRIBUTION	DISTRIBUTION_TH	TOTAL
H1_H2O		150	105						183
B10		26							26
O16		97	14	2					98
Zr90		11	72	4					72
Zr91		27	30	2					40
Zr92		27	20	2					33
Zr94		2	8	2					8
Zr96		2	6						6
U234	1	6	2						6
U235	104	174	13			276		142	371
U236		1							1
U238	29	165	83	38	18	32	9		195
TOTAL	108	303	158	39	18	277	9	142	477

 \Rightarrow Low impact on the final uncertainty

DE LA RECHERCHE À L'INDUSTRI

Impact of the S(α , β) in hot conditions

Benchmarks	Temperature	H(H2O)	Δ
Conflormation UED	600 K	C(JEFF-3.1.1)-C(CAB model)	-10 pcm
Configuration HFP		C(FGM)-C(CAB model)	-66 pcm
Configuration H7D	BUU K	C(JEFF-3.1.1)-C(CAB model)	-10 pcm
Configuration HZP		C(FGM)-C(CAB model)	-61 pcm

Low impact of the S(α , β) in hot conditions \Rightarrow SVT in TRIPOLI with an effective temperature

| PAGE 11