

Testing the new Ice-water TSLs in the Computational Benchmark BUC/Phase-VII

O. Cabellos OECD Nuclear Energy Agency Data Bank

JEFF Meetings - Session B&V April 24 - 27, 2017 Paris, France

© 2017 Organisation for Economic Co-operation and Development

I. Objectives

- Testing the new ICE-water libraries
 - JEFF-3.3T3 + IceWater Bariloche's CAB model
 - ENDF/B-VIIIb4 (IceWater EVAL-OCT16 Holmes, Zerkle)

References:

- 1. Sensitivity/uncertainty Analysis Applied to the Phase VII Benchmark, O. Cabellos, B. Cabellos, N. García-Herranz, J. Sanz, P. Ortego, C. Tore. International Workshop on Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition, 27-30 October, Córdoba, Spain
- 2. Keff Sensitivity/Uncertainty Analysis of the Phase VII Burnup Credit Benchmark, O. Cabellos, B. Cabellos, N. García-Herranz, PHYSOR 2010 Advances in Reactor Physics to Power the Nuclear Renaissance, Pittsburgh, Pennsylvania, USA, May 9-14, 2010
- 3. UPM-CSN Agreement on Burnup Credit 2009-2013

II. BUC Phase-VII Benchmark

"The main objective of this benchmark, is to study the ability of relevant computer codes and associated nuclear data to predict spent fuel isotopic compositions and corresponding keff values, in a cask configuration over the time duration relevant to spent nuclear fuel disposal, up to 1 000 000 years."

Criticality calculation

The criticality model for keff calculations is a representative cask loaded with 21 PWR-UO2 17x17 fuel assemblies.

Providing keff values for fresh fuel and isotopic compositions from the decay calculations (30 post-irradiation time steps, out to 1 000 000 years) for two cases involving:

- First set (ACT) of 11 actinides
- Second set (PFs) involving 14 actinides and 16 fission products

Set 1: Actinide-only burnup-credit nuclides (11 total)

²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, and ²⁴¹Am

Set 2: Actinide + fission product burnup-credit nuclides (30 total)

²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am, ^{242m}Am, ²⁴³Am, ⁹⁵Mo, ⁹⁹Tc, ¹⁰¹Ru, ¹⁰³Rh, ¹⁰⁹Ag, ¹³³Cs, ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁷Sm, ¹⁵⁰Sm, ¹⁵¹Sm, ¹⁵¹Sm, ¹⁵¹Eu, ¹⁵³Eu, and ¹⁵⁵Gd

PWR UO2 discharge fuel compositions for decay calculations

- 4.5-wt% 235U initial enrichment
- 50 GWd/MTU burnup

Reference: John C. Wagner and Georgeta Radulescu, Specification for Phase VII Benchmark UO2 Fuel: Study of spent fuel compositions for long-term disposal, NEA Expert Group on Burn-up Credit, November, 2008

II. Keff values – mean value and std.

II Keff as a function of decay time for Actinide-only in fuel


```
moder / Extract thermal Scattering Law
1 61
' H-H2O
           from Bariloche, CAB model'/
60 10
0/
moder / Extract/convert neutron evaluated data
1 21
'1-H-1 from JEFF-3.3T3'/
20 125
0/
reconr / Reconstruct XS for neutrons
21 22
'1-H-1 PENDE from JEFE-3.3T3'/
125 2/
0.001 0.0 / err tempr errmax (default = err*10)
'Reconstructed 1-H-1 PENDF from JEFF-3.3T3'/
'Processed with NJOY2012.050, at NEA 2017-03-20'/
0/
broadr / Doppler broaden XS
21 22 23
125 1 0 0 0./
0.001 / errthn thnmax errmax
233.0
0/
unresr
21 23 24
125 1 1 1 /
233.0 /
1.E10 /
0/
thermr / Add thermal scattering data (free gas)
0 24 62
                         2 221 1 / Add free-gas model(mt=221)
0 125 32 1 1
                 0
233.0 /
0.001 10.0 / tolerance emax (max energy for thermal treatment in eV)
thermr / Add thermal scattering data (bound)
61 62 27
10 125 32 1 4
                  0
                         2 222 1 /
233.0 /
0.001 10.0 /
acer / Prepare ACE files
21 27 0 28 29
2 0 1 .33/
'H-H2O 233.0 K from (JEFF-3.3T3) NJOY2012.50, NEA MARCH2017'/
125 233.0 'lw14 ' /
1001
        0 0 /
222 128 223 1 1 10.0 0/
acer / Check ACE files
0 28 0 71 81
7 1 1 -1/
stop
```

III. Processing TSL for ice light water

- IceWater Bariloche's CAB model
 Processed with NJOY99.396 (only)
- ENDF/B-VIIIb4 (EVAL-OCT16 Holmes, Zerkle)
 Processed with NJOY2012.82

Caution in ENDF/B-VIIIb4 !!!

```
thermr / Add thermal scattering data (bound)
61 62 27
10 125 16 1 2
                 0 0
                         1 222 1 /
233.15 /
                                   H atoms in H2O ?!!!
0.001 10.0 /
acer / Prepare ACE files
21 27 0 28 29
2 0 1 .08/
'H-H2O 233.15 K from (ENDFB8b4) NJOY2012.82, NEA MARCH2017'/
125 233.15 'lw10
1001
        0 0 /
 222 64 223 1 1 10.0 0/
acer / Check ACE files
0 28 30 71 81
7 1 1 -1/
stop
```


III. Comparison IceWater cross-sections

^{© 2017} Organisation for Economic Co-operation and Development

IV. Keff as a function of Temperature

□ Nuclear Data: JEFF-3.3T3 + IceWater Bariloche's CAB model

© 2017 Organisation for Economic Co-operation and Development

Keff as a function of Light Water Temperature and Density

❑ Keff as a function of NJOY options

Nuclear Data: "JEFF-3.3T3 + IceWater Bariloche's CAB model" and ENDF/B-VIIIb4

 $\ensuremath{\mathbb{C}}$ 2017 Organisation for Economic Co-operation and Development

V. Conclusion

Testing the new ICE-water libraries

- Reactivity change Temperature and state of H2O
- Importance of NJOY options (angle and energy bins)
- o "JEFF-3.3T3+IceWater Bariloche's CAB model" versus ENDF/B-VIIIb4
 - Proposal in JEFF-3.3: To adopt IceWater Bariloche's CAB model

Acknowledgment

□ Thanks UPM & CSN providing MCNP PHASE-VII's inputs