Requirements for TSL data in new format

David Brown NNDC, BNL

a passion for discovery

SG38: "Beyond the ENDF Format"

- WPEC-SG38 approved in May 2012
- Develop new format to replace ENDF
- Requirements essentially developed (that's why I'm here)
- Designing specifications
- Have working prototype of format (GND) and processing/translation code (Fudge)

Special issues

- In US (CSEWG), TSL data has lower profile, compared to say neutron sub library
- Want to revise overly complicated format
 - Hierarchy of approximations unclear to uninitiated
 - Precision/dynamic range of $S_{\alpha\beta}$
 - Covariance data
- Take advantage of improved methodology
 - LEAPR
 - Split self & distinct
 - $d\sigma(E,T)/dE'd\Omega$ directly vs. $S_{\alpha\beta}(\alpha,\beta,T)$
- How to group together evaluations
 - TSL matching onto higher energies
 - How to resolve issues of stoichiometry and normalization
 - TSL is not just vs. T, but P and other parameters (EOS-related or not)

ENDF library has gradually evolved to current state

ENDF library has gradually evolved to current state **30**

ENDF-269 966 998) (2000) (2001) 2006 666 000 066 ratio 86 66 66 67 EEEEEEEE Ø VI.1 VI.2 VI.3 VI.5 VI.5 VI.5 VI.5 VI.7 VI.8 5

Unchanged evals.

Holmes, al-Qasir,

Hehr, Hawari (NCSU)

ENDF library has gradually evolved to current state

New evals. Mod evals. Unchanged evals.

- Very few evaluators (GA, LANL, NCSU)
- + Few processing codes (AMPX, NJOY)
- Retirements of key personal (LANL, ORNL)
- + Many important applications and users

Potential for lots of angry users

```
ENDF-2

I (19

II (19

IV (19

VI.1 (19

VI.2 (20

VI.1 (20

VI.1
```

These are the requirements that we've gathered from you, the nuclear data community

Requirements for a next generation nuclear data format

OECD/NEA/WPEC SubGroup 38*

(Dated: April 1, 2015)

This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as is found in the ENDF format. This set of requirements will be used to guide the development of a new set of formats to replace the legacy ENDF format.

CONTENTS

Ι.	Introduction	2
	A. Scope of data to support	3
	B. How to use these requirements	4
	C. Main requirements	4
	D. Hierarchal structures	5
	E. Complications	6
	1. Is it a material property or a reaction property?	6
	2. Different optimal representation in different	
	physical regions	7
	3. Ensuring consistency	7
	4. Legacy data	7
	5. Special cases	8
II.	Common motifs	8
	A. Documentation	8
	B. What data are derived from what other data?	11
	C. Product list elements	13

	H. Examples of covariance data usage in this hierarchy	48
VII.	Required low-level containers	49
	A. The lowest-level	51
	B. General data containers	52
	C. Text	53
	D. Hyperlinks	53
VIII.	Special reaction case: Atomic Scattering Data	54
	A. Incoherent Photon Scattering	55
	B. Coherent Photon Scattering	55
IX.	Special reaction case: Particle production or Spallation	
	reactions	56
Х.	Special reaction case: Radiative capture	56
XI.	Special reaction case: Fission	57
	A. Introduction	57

This is (or will be anyway) your format

Requirements for a next generation nuclear data format

OECD/NEA/WPEC SubGroup 38*

(Dated: April 1 2015)				
This doc arrangen ments wi ENDF fc We've bee you and c	en lis other	stening to s, but		
• Did we ge	et it r	right?	n this hierarchy	48
I. Introduction A. Scope of B. How to C. Main red D. Hierarch	we s vronç	still missing? g?		49 51 52 53 53
 E. Complic 1. Is it 2. Different optimal representation in different physical regions 3. Ensuring consistency 4. Legacy data 5. Special cases 	,.	A. Incoherent Photon ScatteringB. Coherent Photon ScatteringIX. Special reaction case: Particle product reactions	Data ion or Spallation	54 55 55 56
II. Common motifsA. DocumentationB. What data are derived from what other data?C. Product list elements	8 8 11 13	X. Special reaction case: Radiative capturXI. Special reaction case: FissionA. Introduction	re	56 57 57

Main goals/requirements

- 1. The hierarchy should *reflect our understanding of nuclear reactions and decays*, clearly and uniquely specifying all such data.
- 2. It should *support storing multiple representations of these quantities simultaneously*, for example evaluated and derived data.
- 3. It should *support both inclusive and exclusive reaction data*, that is discrete reaction channels as well as sums over multiple channels.
- 4. It should use *general-purpose data containers* suitable for reuse across several application spaces.
- 5. It should eliminate redundancy where possible.
- As a corollary to requirements 1 and 2, *multiple representations of* the same data should be stored as closely together in the hierarchy as feasible.

Special issues

In US (CSEWG), TSL data has lower profile, compared to say neutron sub library

Want to revise overly complicated format

- Hierarchy of approximations unclear to uninitiated
- Precision/dynamic range of $S_{\alpha\beta}$
- Covariance data

Take advantage of improved methodology

- LEAPR
- Split self & distinct
- $d\sigma(E,T)/dE'd\Omega$ directly vs. $S_{\alpha\beta}(\alpha,\beta,T)$
- How to group together evaluations
 - TSL matching onto higher energies
 - How to resolve issues of stoichiometry and normalization
 - TSL is not just vs. T, but P and other parameters (EOS-related or not)

Main approximations in TSL treatments

Supporting ENDF's Thermal Scattering Law would be easy...

3 cases supported by ENDF:

- coherent elastic (off ordered substances)
- incoherent elastic (hydrogenous solids)
- incoherent inelastic (famous Sαβ data)
- All cases are parameterized forms of dσ/dΩdE', so use
 - <dcrossSection_dOmega> (elastic) or
 <dcrossSection_dOmega_dE> (inelastic)
 - Parameterizations for elastic cases given in ENDF manual
 - Parameterization for inelastic case implied in ENDF manual

In general case, can break scattering kernel up to some extent, but not enough to help

$$S(\vec{\kappa},\omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt e^{-\omega t} I(\vec{\kappa},t) \quad I(\vec{\kappa},t) = \frac{1}{N} \sum_{j,j'} \left\langle e^{-\vec{\kappa}\cdot\vec{R}_{j'}(0)} e^{-\vec{\kappa}\cdot\vec{R}_{j}(t)} \right\rangle$$

Write

$$\frac{d^2\sigma(E)}{d\Omega dE'} = \frac{k'}{k} \left[\sigma_{coh} S(\vec{\kappa},\omega) + \sigma_{inc} S_s(\vec{\kappa},\omega) \right]$$

where

$$S(\vec{\kappa},\omega) = S_s(\vec{\kappa},\omega) + S_d(\vec{\kappa},\omega)$$
$$\sigma_{coh} = 4\pi \langle b \rangle^2$$
$$\sigma_{inc} = 4\pi (\langle b^2 \rangle - \langle b \rangle^2)$$

Just store these? Note S(κ,ω) is rewritten Saβ so this is still huge

In the incoherent Gaussian approximation, the scattering kernel is computed by LEAPR as follows

$$\mathcal{S}_s(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, e^{i\beta t} e^{-\gamma(t)}$$

where

$$\gamma(t) = \alpha \int_{-\infty}^{\infty} d\omega \rho(\omega) \left(1 - e^{-i\omega t}\right) \frac{e^{-\omega/2}}{2\omega \sinh(\omega/2)}$$

this proximation. Phonon spectrum is

In this approximation, only store ρ(ω) & its covariance

Phonon spectrum is sole input, rest is math, including the structure factor in $\omega \rightarrow 0$ limit

However, we were asked to support much more in the new format

- Requested to support covariance data in TSL
- Requested to store stuff to generate S_{αβ} using photon spectrum ρ(ω) of material and structure factor S(q) in NJOY's LEAPR module
 - Both $\rho(\omega)$ and S(q) are 2d tables that can have covariance
 - Would need to "encode" LEAPR somehow
 - Could put covariance on these very easily but uncertainty propagation through LEAPR tough
- New measurements and theory produce Sαβ directly, without ENDF's approximations
 - Can we store this? It is a 4d data set $(S \times \alpha \times \beta \times T)!$
 - What about covariance?

Special issues

- In US (CSEWG), TSL data has lower profile, compared to say neutron sub library
- Want to revise overly complicated format
 - Hierarchy of approximations unclear to uninitiated
 - Precision/dynamic range of $S_{\alpha\beta}$
 - Covariance data
- Take advantage of improved methodology
 - LEAPR
 - Split self & distinct
 - dσ(E,T)/dE'dΩ directly vs. S_{αβ}(α,β,T)
- How to group together evaluations
 - TSL matching onto higher energies
 - How to resolve issues of stoichiometry and normalization
 - TSL is not just vs. T, but P and other parameters (EOS-related or not)

Normalization inconsistencies

- For benzene (C6H6):
 - T.ENDFB7R0 transitions smoothly across the thermal boundary
 - T.ENDFB7R0.LANL is off by a factor of 6
 - T.ENDFB7R1.LANL is off by a factor of 12

From Dave Heinrichs

Think about water from a neutron's perspective

Gluing together evaluations: <metaEvaluation>

An xsdir-like facility is used by many institutions to glue together evaluations

- In LANL's MCNP code system, the xsdir file allows one to connect the thermal neutron scattering data with the neutron nuclear reaction data and even various high energy models such as CEM.
- The LLNL transport codes AMTRAN and Mercury both allow one to define target macros to describe the material in a zone.
- AECL, there is another, similar, facility to connect thermal neutron scattering data at different temperatures and even different phases of the target material.

There are other uses for connecting evaluations:

- Defining elemental evaluations
- Grouping data on same target, but heated to different temperatures
- Defining generic fission fragments w/ weighted average of fission fragment evals.

Putting together the parts of a TSL evaluation at fixed temperature, but
 including all the scatterers.

Defining a <metaE¹

</referredTargets>

</metaTaraet>

<referredTarget index="0" name="Water ice" xlink:type="simple" <referredTarget index="1" name="Liquid water" xlink:type="simp <referredTarget index="2" name="Dissociated water" xlink:type= <referredTarget index="2" name="Dissociated water" xlink:type= <referredTarget index="2" name="Dissociated water" xlink:type= <referredTarget index="2" name="Dissociated water" xlink:type=

ANY NUM.

- <axis> elements define grid on which we will use evaluations. Could be:
 - incident neutron energy
 - material temperature
- <referredEvaluation:</p> actual evaluation
 - define stoichiometry
 - define location in grid defined by axis

Notes on metaEvaluation concept

- referredEvaluation points to a evaluation or another metaEvaluation
- stoichiometricFraction tag lets you specify, say, chemical or isotopic make-up if multiple referredEvaluations are allowed
- stoichiometricFraction better add up to 1!
- outside of parameter ranges in axis tags, the metaEvaluation does not exist
- metaEvaluation only valid for listed projectile
- need to make sure every region in axes covered by a referredEvaluation
- metaEvaluations are often reusable across different libraries
 21

Hopefully we've captured your input see <u>https://www.oecd-nea.org/science/</u> wpec/sg38/top_level_hierarchy.pdf

Requirements for a next generation nuclear data format

OECD/NEA/WPEC SubGroup 38*

(Dated: April 1, 2015)

This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as is found in the ENDF format. This set of requirements will be used to guide the development of a new set of formats to replace the legacy ENDF format.

CONTENTS

Ι.	Introduction	2
	A. Scope of data to support	3
	B. How to use these requirements	4
	C. Main requirements	4
	D. Hierarchal structures	5
	E. Complications	6
	1. Is it a material property or a reaction property?	6
	2. Different optimal representation in different	
	physical regions	7
	3. Ensuring consistency	7
	4. Legacy data	7
	5. Special cases	8
II.	Common motifs	8
	A. Documentation	8
	B. What data are derived from what other data?	11
	C. Product list elements	13

	H. Examples of covariance data usage in this hierarchy	48
VII.	Required low-level containers	49
	A. The lowest-level	51
	B. General data containers	52
	C. Text	53
	D. Hyperlinks	53
VIII.	Special reaction case: Atomic Scattering Data	54
	A. Incoherent Photon Scattering	55
	B. Coherent Photon Scattering	55
IX.	Special reaction case: Particle production or Spallation	
	reactions	56
Х.	Special reaction case: Radiative capture	56
XI.	Special reaction case: Fission	57
	A. Introduction	57