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Motivation 
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Example 



Vision 
 Establish a predictive approach for generating the 

needed data (cross sections) to describe the energy 
exchange of thermal neutrons in matter 

 
 Various applications: 
 

 Nuclear criticality safety 
 
 Nuclear reactor design 
 
 Neutron beam spectral shaping (i.e., filtering) 
 
 Neutron source (cold, ultracold, etc.) characterization 
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The scattering law 

Using Born approximation, it can be shown that the double differential 
scattering cross section has the form 

Van Hove’s formulation 
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where G(r,t) is the dynamic pair correlation function and is expressible in 
terms of the atomic positions.  

Thermal Neutron Scattering 



Correlation Functions 
 Fourier transforms of correlation functions in space and 

time reveal the energy and momentum states available 
within the system 

radius [Å]
0 2 4 6 8 10

Lo
g[

G
(r

)]
 [a

rb
.]

time [fs]
0 1000 2000 3000 4000 5000

V
A

C
F 

[a
rb

.]

-1.0

-0.5

0.0

0.5

1.0

Frequency [THz]
0.0 0.5 1.0 1.5 2.0 2.5

D
O

S 
[a

rb
.]

q-vector [Å-1]

0.0 0.1 0.2 0.3 0.4 0.5 0.6

I(
k)

 [a
rb

.]

κ (Α−1) 






Methods 
 Several approaches can be used to extract the 

fundamental information for calculating the 
scattering law and eventually the cross sections 

 
 Empirical atomic force analysis combined with dynamical 

matrix calculations 
 Basis of current ENDF/B libraries 

 
 Ab initio Quantum (DFT) methods combined with dynamical 

matrix calculations 
 
 Molecular Dynamics (ab initio MD or classical MD) methods 

combined with correlation function analysis 
 



e.g., NJOY 

e.g., NJOY 
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Materials Studied at NCSU 
 Graphite, Beryllium (PHYSOR 2004 & 2008) 

 Treatment of nuclear graphite (porous system) 
 Including coherent inelastic for both materials 

 

 Silicon dioxide (New, contributed to NNDC/ENDF, PHYSOR 2008) 
 Support criticality safety analysis 

 

 Silicon carbide (New, contributed to NNDC/ENDF) 
 Support advanced fuel cycle applications (e.g., FCM fuels) 

 
 Thorium hydride, uranium-zirconium hydride, calcium hydride 

(PHYSOR 2004) 
 

 Sapphire and bismuth (PHYSOR 2006) 
 Thermal neutron filters 

 

 Solid methane (predictive analysis – AccApp 2011) 
 Cold neutron moderator 
 Captured phase I to II transformation upon cooling below 22 K 
 

 Lucite (C5O2H8) and polyethylene (C2H4) 
 Of interest as moderators 

 



 
 
 

Graphite 

 Hexagonal Structure 
 4 atoms per unit cell 
 a=b=2.46 Å 
 c=6.7 Å 

 Ideal graphite consists of 
planes (sheets) of carbon 
atoms arranged in a 
hexagonal lattice.  
Covalent bonding exits 
between intraplaner atoms, 
while the interplaner 
bonding is of the weak Van 
der Waals type.  The 
planes are stacked in an 
“abab” sequence. 



Graphite – 1 

T = 300 K
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T = 300 K
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Graphite – 2 



          - particle density autocorrelation ( ),S κ ω

Scattering law is computed directly from the atomic positions as: 
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where the positions are known at discrete time steps and the Fourier 
transforms are taken in discrete form.   

• Detailed balance 

• Response of scattering system to neutron interaction 



Graphite Scattering Law 



T = 300 K
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Graphite – 3 

T = 300 K
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Graphite Types 

Ideal Graphite 
 

Density = 2.25 g/cm3 

Nuclear Graphite 
 

Density = 1.5 – 1.8 g/cm3 



MD Models 

8000 atoms 
30% porosity 
NVT ensemble  
T = 300 K 
 



MD Models 
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Graphite – 3 

T = 300 K
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Graphite – 4 

T = 300 K
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AIMD Model of Be 

HCP (P63/mmc) 
 a=2.2856 (2.27 AIMD) 
 c=3.5832 (3.55 AIMD) 

 
VASP 

 GGA-PAW 
 3x3x3 k-mesh 
 350eV Plane-wave cut-off 



AIMD Model of Be 
 VASP 5x5x5 super-cell (250 atoms) 
 Temperature of 300K under NVE 
 Equilibrated with velocity scaling (1.5ps) 
 10ps simulation with 1fs time steps 

Supercell: c-axis Supercell: a-axis 



Verification of Model Behavior 

Atoms well-behaved 
No-Diffusion 
MSD 
Velocity Distribution 

Temperature 
Fluctuations 
Reasonable standard 

deviation 
Energy Fluctuations 
Relative fluctuation 

must be small 
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Computational Approach 
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Velocity Auto-Correlation Function 
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Phonon Density of States 
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Inelastic Thermal Neutron 
Scattering Cross Section 
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Polyethylene System 
 Systems of 

multiple polymer 
chains are needed 
to account for 
inter-chain 
interactions.   

 Initial system, 20 
polymer chains, 
each 200 
monomers long, 
24,000 atoms.  



MD Simulation 






Summary 
Developed a modern approach for thermal 

neutron cross section calculations based on the 
use of atomistic simulations 
 Ab initio lattice dynamics 
 Molecular dynamics 

 

 The approach is predictive 
 New materials 
 All states of matter (solid, liquid, gas) 
 Imperfect structure 
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