OECD/NEA Kick-off Meeting: WPEC SG42 "Thermal Scattering Kernel S(α,β): Measurement, Evaluation and Application" May 18 – 19, 2015 • Paris, France

Implementation of Atomistic Simulation Techniques in Thermal Neutron Scattering Data Generation Ayman I. Hawari

Nuclear Reactor Program Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

Acknowledgement

The many graduate students and postdocs at North Carolina State University

Acknowledgement

- Collaboration with LLNL and Bettis labs
- Current funding by the NCSP and NR programs and past funding by DOE NE through NERI and NEUP programs

Motivation

Example

Table II

CONF-880911--23

DE89 003625

THE EFFECT OF CARBON CRYSTAL STRUCTURE ON TREAT REACTOR PHYSICS CALCULATIONS

> R. W. Swanson and L. J. Harrison Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, ID 83403-2528 (208) 526-7167

Calculated Values of k-effective

Calculational Description			k-effective
Loading 1	341 100%	Graphite	0.9724 <u>+</u> 0.0021
Loading 1	.341 59%	Graphite	0.9921 <u>+</u> 0.0012
Loading 1	.343 100%	Graphite	0.9707 <u>+</u> 0.0024
Loading 1	.343 59%	Graphite	0.9922 ± 0.0017

Table III

Calculated Fission Density Ratios

Work Supported by the U. S. Department of Energy, Nuclear Energy Programs, under Contract W-31-109-Eng-38.	Calculational Description	Calculated Fission Density Ratio	CalcExp. Exp.
The endemitted manuscript has been authorized for a Canadian of the U.S. Generatories and the Mill (1994) and the Canadian and the Mill (1994) and the Antice Antice and Antice and Antice and Antice Antice and Antice and Antice and Antice and Antice and Antice and Antice and antice and Antice and Antice and Anti- e antiputs and Antice and Antice and Anti- e antiputs and Antice and Antice and Anti- antiputs and Antice and Antice and Antice and Antice and Anti- antiputs and Antice and Antice and Antice and Antice and Anti- antice and Antice and Antice and Antice and Antice and Anti- antice and Antice and	100% Graphite	43.2 <u>+</u> 1.4	+6.9%
submitted to:	59% Graphite	39.4 <u>+</u> 1.2	-2.5%

1988 International Reactor Physics Conference Jackson Hole, Wyoming 18-21 September 1988

5

DISCLAIMER

Vision

Establish a predictive approach for generating the needed data (cross sections) to describe the energy exchange of thermal neutrons in matter

□ Various applications:

- Nuclear criticality safety
- Nuclear reactor design
- Neutron beam spectral shaping (i.e., filtering)
- Neutron source (cold, ultracold, etc.) characterization

Thermal Neutron Scattering

Using Born approximation, it can be shown that the double differential scattering cross section has the form

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{1}{4\pi} \frac{k'}{k} \left\{ \sigma_{coh} S(\vec{\kappa}, \omega) + \sigma_{incoh} S_s(\vec{\kappa}, \omega) \right\}$$

The scattering law $S(\vec{\kappa}, \omega)$ is composed of two parts

$$S(\vec{\kappa},\omega) = S_s(\vec{\kappa},\omega) + S_d(\vec{\kappa},\omega)$$

Van Hove's formulation

$$I(\vec{\kappa},t) = \int G(\vec{r},t) \exp(i\vec{\kappa}\cdot\vec{r}) d\vec{r}$$
$$S(\vec{\kappa},\omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(\vec{r},t) e^{i(\vec{\kappa}\cdot\vec{r}-\omega t)} d\vec{r} dt$$

where G(r,t) is the *dynamic pair correlation function* and is expressible in terms of the atomic positions.

Correlation Functions

Fourier transforms of correlation functions in space and time reveal the energy and momentum states available within the system

Methods

- Several approaches can be used to extract the fundamental information for calculating the scattering law and eventually the cross sections
 - Empirical atomic force analysis combined with dynamical matrix calculations
 Basis of current ENDF/B libraries
 - Ab initio Quantum (DFT) methods combined with dynamical matrix calculations
 - Molecular Dynamics (ab initio MD or classical MD) methods combined with correlation function analysis

Materials Studied at NCSU

- Graphite, Beryllium (PHYSOR 2004 & 2008)
 - Treatment of nuclear graphite (porous system)
 - Including coherent inelastic for both materials
- □ Silicon dioxide (New, contributed to NNDC/ENDF, PHYSOR 2008)
 - Support criticality safety analysis
- □ Silicon carbide (New, contributed to NNDC/ENDF)
 - Support advanced fuel cycle applications (e.g., FCM fuels)
- Thorium hydride, uranium-zirconium hydride, calcium hydride (PHYSOR 2004)
- Sapphire and bismuth (PHYSOR 2006)
 - Thermal neutron filters
- □ Solid methane (predictive analysis AccApp 2011)
 - Cold neutron moderator
 - Captured phase I to II transformation upon cooling below 22 K
- Lucite (C5O2H8) and polyethylene (C2H4)
 - Of interest as moderators

Graphite

Ideal graphite consists of planes (sheets) of carbon atoms arranged in a hexagonal lattice. Covalent bonding exits between intraplaner atoms, while the interplaner bonding is of the weak Van der Waals type. The planes are stacked in an "abab" sequence.

Graphite – 1

Graphite – 2

$S(\kappa, \omega)$ - particle density autocorrelation

Scattering law is computed directly from the atomic positions as:

$$I^{cl}(\kappa,t) = \frac{1}{N} \sum_{j,j'} \left\langle \exp\left[-i\vec{\kappa} \cdot \vec{R}_{j'}(0)\right] \exp\left[i\vec{\kappa} \cdot \vec{R}_{j}(t)\right] \right\rangle$$
$$S^{cl}(\kappa,\omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} I(\kappa,t) \exp\left(-i\omega t\right) dt$$

where the positions are known at discrete time steps and the Fourier transforms are taken in discrete form.

- Detailed balance
- Response of scattering system to neutron interaction

Graphite Scattering Law

α

Graphite – 2

Graphite – 3

Graphite Types

Ideal Graphite Density = 2.25 g/cm³

Nuclear Graphite Density = 1.5 – 1.8 g/cm³

MD Models

8000 atoms 30% porosity NVT ensemble T = 300 K

MD Models

Graphite – 3

Graphite – 4

AIMD Model of Be

HCP (P6₃/mmc)
 a=2.2856 (2.27 AIMD)
 c=3.5832 (3.55 AIMD)

VASP

- GGA-PAW
- 3x3x3 k-mesh
- 350eV Plane-wave cut-off

AIMD Model of Be

- VASP 5x5x5 super-cell (250 atoms)
- Temperature of 300K under NVE
- Equilibrated with velocity scaling (1.5ps)
- 10ps simulation with 1fs time steps

Supercell: c-axis

Supercell: a-axis

Verification of Model Behavior

Atoms well-behaved

No-Diffusion

MSD

- Velocity Distribution
- Temperature Fluctuations
 - Reasonable standard deviation
- Energy Fluctuations
 Relative fluctuation must be small

Computational Approach

$$C(t) = \left\langle \overrightarrow{v_j(0)} \cdot \overrightarrow{v_j(t)} \right\rangle = \frac{1}{N} \sum_{j=1}^{N} \overrightarrow{v_j(0)} \cdot \overrightarrow{v_j(t)}$$
$$\rho(\omega) = \frac{M}{3\pi k_\beta T} \int_{-\infty}^{\infty} C(t) e^{-i\omega t} dt$$

$$S(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\beta t} e^{-\gamma(t,\rho(\omega))} dt$$

$$\frac{d^{2}\sigma}{d\Omega dE}\Big|_{\text{inelastic}} = \frac{\sigma}{2k_{B}T}\sqrt{\frac{E'}{E}}e^{-\frac{\beta}{2}}S(\alpha,\beta)$$

Phonon Density of States

Inelastic Thermal Neutron Scattering Cross Section

Polyethylene System

- Systems of multiple polymer chains are needed to account for inter-chain interactions.
- Initial system, 20 polymer chains, each 200 monomers long, 24,000 atoms.

MD Simulation

Summary

Developed a modern approach for thermal neutron cross section calculations based on the use of atomistic simulations

- Ab initio lattice dynamics
- Molecular dynamics
- □ The approach is predictive
 - New materials
 - All states of matter (solid, liquid, gas)
 - Imperfect structure