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Motivation 
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Example 



Vision 
 Establish a predictive approach for generating the 

needed data (cross sections) to describe the energy 
exchange of thermal neutrons in matter 

 
 Various applications: 
 

 Nuclear criticality safety 
 
 Nuclear reactor design 
 
 Neutron beam spectral shaping (i.e., filtering) 
 
 Neutron source (cold, ultracold, etc.) characterization 
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Using Born approximation, it can be shown that the double differential 
scattering cross section has the form 

Van Hove’s formulation 
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where G(r,t) is the dynamic pair correlation function and is expressible in 
terms of the atomic positions.  

Thermal Neutron Scattering 



Correlation Functions 
 Fourier transforms of correlation functions in space and 

time reveal the energy and momentum states available 
within the system 

radius [Å]
0 2 4 6 8 10

Lo
g[

G
(r

)]
 [a

rb
.]

time [fs]
0 1000 2000 3000 4000 5000

V
A

C
F 

[a
rb

.]

-1.0

-0.5

0.0

0.5

1.0

Frequency [THz]
0.0 0.5 1.0 1.5 2.0 2.5

D
O

S 
[a

rb
.]

q-vector [Å-1]

0.0 0.1 0.2 0.3 0.4 0.5 0.6

I(
k)

 [a
rb

.]

κ (Α−1) 






Methods 
 Several approaches can be used to extract the 

fundamental information for calculating the 
scattering law and eventually the cross sections 

 
 Empirical atomic force analysis combined with dynamical 

matrix calculations 
 Basis of current ENDF/B libraries 

 
 Ab initio Quantum (DFT) methods combined with dynamical 

matrix calculations 
 
 Molecular Dynamics (ab initio MD or classical MD) methods 

combined with correlation function analysis 
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Materials Studied at NCSU 
 Graphite, Beryllium (PHYSOR 2004 & 2008) 

 Treatment of nuclear graphite (porous system) 
 Including coherent inelastic for both materials 

 

 Silicon dioxide (New, contributed to NNDC/ENDF, PHYSOR 2008) 
 Support criticality safety analysis 

 

 Silicon carbide (New, contributed to NNDC/ENDF) 
 Support advanced fuel cycle applications (e.g., FCM fuels) 

 
 Thorium hydride, uranium-zirconium hydride, calcium hydride 

(PHYSOR 2004) 
 

 Sapphire and bismuth (PHYSOR 2006) 
 Thermal neutron filters 

 

 Solid methane (predictive analysis – AccApp 2011) 
 Cold neutron moderator 
 Captured phase I to II transformation upon cooling below 22 K 
 

 Lucite (C5O2H8) and polyethylene (C2H4) 
 Of interest as moderators 

 



 
 
 

Graphite 

 Hexagonal Structure 
 4 atoms per unit cell 
 a=b=2.46 Å 
 c=6.7 Å 

 Ideal graphite consists of 
planes (sheets) of carbon 
atoms arranged in a 
hexagonal lattice.  
Covalent bonding exits 
between intraplaner atoms, 
while the interplaner 
bonding is of the weak Van 
der Waals type.  The 
planes are stacked in an 
“abab” sequence. 



Graphite – 1 

T = 300 K
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T = 300 K
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Graphite – 2 



          - particle density autocorrelation ( ),S κ ω

Scattering law is computed directly from the atomic positions as: 
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where the positions are known at discrete time steps and the Fourier 
transforms are taken in discrete form.   

• Detailed balance 

• Response of scattering system to neutron interaction 



Graphite Scattering Law 



T = 300 K
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Graphite – 3 

T = 300 K
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Graphite Types 

Ideal Graphite 
 

Density = 2.25 g/cm3 

Nuclear Graphite 
 

Density = 1.5 – 1.8 g/cm3 



MD Models 

8000 atoms 
30% porosity 
NVT ensemble  
T = 300 K 
 



MD Models 
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Graphite – 3 

T = 300 K
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Graphite – 4 

T = 300 K
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AIMD Model of Be 

HCP (P63/mmc) 
 a=2.2856 (2.27 AIMD) 
 c=3.5832 (3.55 AIMD) 

 
VASP 

 GGA-PAW 
 3x3x3 k-mesh 
 350eV Plane-wave cut-off 



AIMD Model of Be 
 VASP 5x5x5 super-cell (250 atoms) 
 Temperature of 300K under NVE 
 Equilibrated with velocity scaling (1.5ps) 
 10ps simulation with 1fs time steps 

Supercell: c-axis Supercell: a-axis 



Verification of Model Behavior 

Atoms well-behaved 
No-Diffusion 
MSD 
Velocity Distribution 

Temperature 
Fluctuations 
Reasonable standard 

deviation 
Energy Fluctuations 
Relative fluctuation 

must be small 
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Computational Approach 
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Velocity Auto-Correlation Function 
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Phonon Density of States 
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Inelastic Thermal Neutron 
Scattering Cross Section 

Energy [eV]

1e-5 1e-4 1e-3 1e-2 1e-1 1e+0

In
el

as
tic

 S
ca

tte
rin

g 
C

ro
ss

 S
ec

tio
n 

[b
ar

n]

0.1

1

10

AILD
AIMD



Polyethylene System 
 Systems of 

multiple polymer 
chains are needed 
to account for 
inter-chain 
interactions.   

 Initial system, 20 
polymer chains, 
each 200 
monomers long, 
24,000 atoms.  



MD Simulation 






Summary 
Developed a modern approach for thermal 

neutron cross section calculations based on the 
use of atomistic simulations 
 Ab initio lattice dynamics 
 Molecular dynamics 

 

 The approach is predictive 
 New materials 
 All states of matter (solid, liquid, gas) 
 Imperfect structure 
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