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Motivation
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Example
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Vision

O Establish a predictive approach for generating the
needed data (cross sections) to describe the energy
exchange of thermal neutrons in matter

O Various applications:

B Nuclear criticality safety

B Nuclear reactor design
B Neutron beam spectral shaping (i.e., filtering)

B Neutron source (cold, ultracold, etc.) characterization



Thermal Neutron Scattering

Using Born approximation, it can be shown that the double differential
scattering cross section has the form

d?o 1K
dQdE’ 4z k

The scattering law S(x,w) is composed of two parts

{0 S (§,0) + Tioon S, () }

S(x,w) =S, (k,w)+ S, (k,w)

Van Hove’s formulation
I(&,1)=[G(F.1)exp ik -7 dr

s(,z,w)zz—jm [ [6(r.t)egrdt

where G(r,t) is the dynamic pair correlation function and is expressible in
terms of the atomic positions.



Correlation Functions

O Fourier transforms of correlation functions in space and
time reveal the energy and momentum states available

within the system
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Methods

O Several approaches can be used to extract the
fundamental information for calculating the
scattering law and eventually the cross sections

B Empirical atomic force analysis combined with dynamical
matrix calculations
O Basis of current ENDF/B libraries

B Ab initio Quantum (DFT) methods combined with dynamical
matrix calculations

B Molecular Dynamics (ab initio MD or classical MD) methods
combined with correlation function analysis
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Build Atomistic Model
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MD Simulation
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Materials Studied at NCSU

Graphite, Beryllium (PHYSOR 2004 & 2008)
B Treatment of nuclear graphite (porous system)
B Including coherent inelastic for both materials

Silicon dioxide (New, contributed to NNDC/ENDF, PHYSOR 2008)
B Support criticality safety analysis

Silicon carbide (New, contributed to NNDC/ENDF)
B Support advanced fuel cycle applications (e.g., FCM fuels)

Thorium hydride, uranium-zirconium hydride, calcium hydride
(PHYSOR 2004)

Sapphire and bismuth (PHYSOR 2006)
B Thermal neutron filters

Solid methane (predictive analysis — AccApp 2011)
B Cold neutron moderator
B Captured phase | to Il transformation upon cooling below 22 K

Lucite (C502H8) and polyethylene (C2H4)
B Of interest as moderators



Graphite

|deal graphite consists of
planes (sheets) of carbon
atoms arranged in a
hexagonal lattice.
Covalent bonding exits
between intraplaner atoms,
while the interplaner
bonding is of the weak Van
der Waals type. The
planes are stacked in an
“abab” sequence.

; CH&KHJ

=
0.246 nm

[0 Hexagonal Structure
0 4 atoms per unit cell
O a=b=2.46 A

Oc=6.7 A



Graphite — 1

102
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Graphite — 2

102
—— ENDF/B-VII data - calculated T=300K
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S(x, ) - particle density autocorrelation

Scattering law is computed directly from the atomic positions as:

o (K,t):%erxp[_i,;.ﬁj.(O)}exp[iE-ﬁj (t)]>

)]

S (x =i jl (x,t)exp(~iwt)dt

where the positions are known at discrete time steps and the Fourier
transforms are taken in discrete form.

» Detailed balance

* Response of scattering system to neutron interaction




Graphite Scattering Law
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102
—— ENDF/B-VII data - calculated T=300K
O Ideal graphite - measured
O BNL-325 - measured
O NCSU ideal graphite - measured
3 B NCSU reactor-grade graphite - measured
N’ 101 _
c
9
dd
o
)
0p]
)]
a 0
O 10°
O
101 T T T T T
10°% 104 103 10 101 100

Energy (eV)




Graphite — 3
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Graphite Types

Nuclear Graphite

Ideal Graphite Density =1.5-1.8 g/cm?
Density = 2.25 g/cm?3




MD Models

8000 atoms
30% porosity
NVT ensemble
T =300 K




MD Models
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Graphite — 3
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AIMD Model of Be

OHCP (P65/mmc) /—

B a=2.2856 (2.27 AIMD)

B ¢=3.5832 (3.55 AIMD)

OVASP

B GGA-PAW
B 3x3x3 k-mesh
B 350eV Plane-wave cut-off

C

S




AIMD Model of Be

VASP 5x5x5 super-cell (250 atoms)
Temperature of 300K under NVE
Equilibrated with velocity scaling (1.5ps)
10ps simulation with 1fs time steps
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Verification of Model Behavior

OAtoms well-behaved |
m No-Diffusion ‘
B MSD
B Velocity Distribution

O Temperature
Fluctuations

B Reasonable standard
deviation
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Computational Approach
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Velocity Auto-Correlation Function
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Velocity Auto-Correlation Function
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Velocity Auto-Correlation Function
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Velocity Auto-Correlation Function
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Velocity Auto-Correlation Function
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Velocity Auto-Correlation Function
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Phonon Density of States
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Inelastic Thermal Neutron
Scattering Cross Section
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Polyethylene System

 Systems of
multiple polymer
chains are needed
to account for
iInter-chain
iInteractions.

O Initial system, 20
polymer chains,
each 200
monomers long,
24,000 atoms.




MD Simulation







Summary

O Developed a modern approach for thermal
neutron cross section calculations based on the
use of atomistic simulations
B Ab initio lattice dynamics
B Molecular dynamics

0 The approach is predictive
B New materials
B All states of matter (solid, liquid, gas)
B Imperfect structure
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