DE LA RECHERCHE À L'INDUSTRIE

Status of Thermal Scattering Law Data Files

NOGUERE Gilles, CEA, DEN Cadarache

WPEC, SG-42, NEA, Paris, 18 May 2015

www.cea.fr

List of thermal scattering law data files in ENDF-6 format

Material number	JEFF-3.1.1	ENDF/B-VII	JENDL-4.0
1	H(H20)	H(H2O)	H(H2O)
2 3		Para Hydrogen	Para Hydrogen
3		Ortho Hydrogen	Ortho Hydrogen
7	H(ZrH)	H(ZrH)	H(ZrH)
8	H(CaH2)		
11	D(D2O)	D(D20)	D(D2O)
12		Para Deuterium	Para Deuterium
13		Ortho Deuterium	Ortho Deuterium
26	Be metal	Be metal	Be metal
27		Be(BeO)	Be(BeO)
28		O(BeO)	
31	Graphite	Graphite	Graphite
33		Liquid Methane	Liquid Methane
34		Solid Methane	Solid Methane
37	H(CH2)	H(CH2)	
40		Benzine	Benzine
45		Al metal	
52	Mg metal		
56		Fe metal	
58		Zr(ZrH)	Zr(ZrH)
59	Ca(CaH2)		
75		O(UO2)	
76		U(UO2)	
Number of materials	9	20	14

Thermal scattering law data files for JEFF

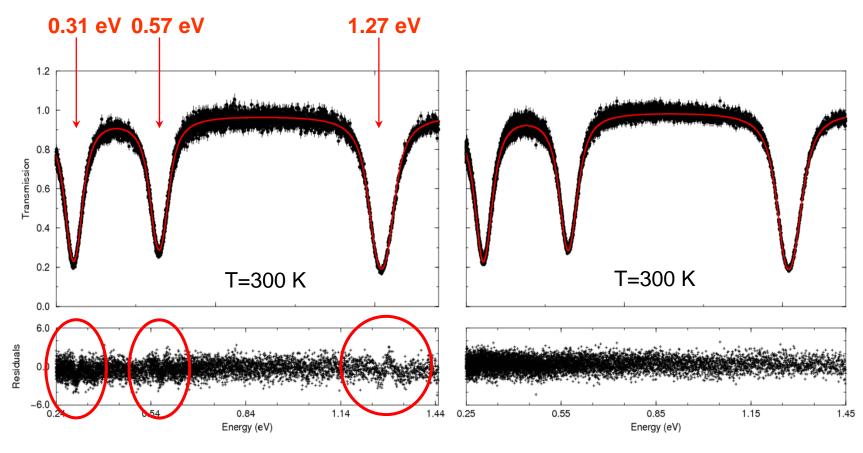
Evaluation work on "thermal scattering data" for JEFF was mainly performed at the Karlsruhe Institute of Technology (KIT) by J. Keinert and M. Mattes

- 1981-2005 : this group produced Evaluated Nuclear Data Files (MF=7, MT=4) for H in H20, D in D20, H in ZrH, H in polyethylene, Graphite and Be metal
- 2003-2004: Three additional files were produced by CEA (H in CaH2, Ca in CaH2, Mg metal)

see also: "Thermal Scattering Law Data IAEA Nuclear Data Library" https://www-nds.iaea.org/indltsl/

Nuclear reactor applications

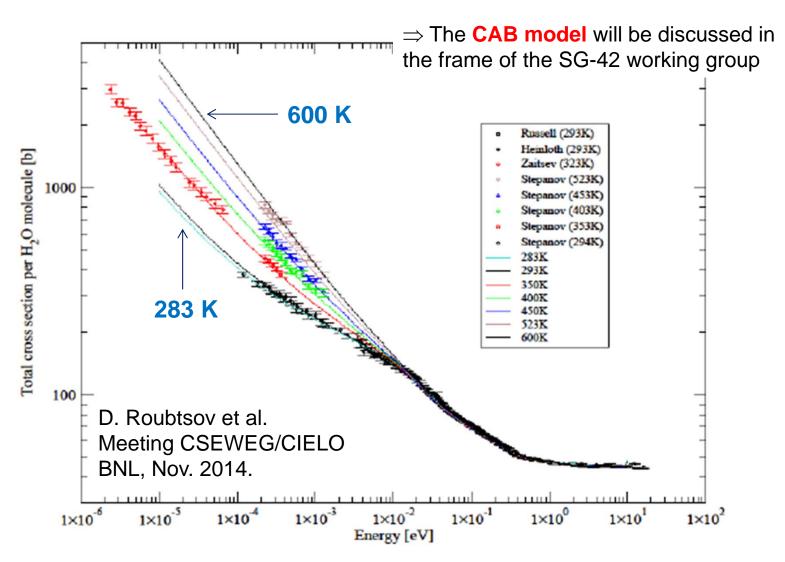
\Rightarrow Two different issues of the neutron scattering process as a function of the temperature


	Material number	JEFF-3.1.1	ENDF/B-VII	JENDL-4.0
	1	H(H20)	H(H2O)	H(H2O)
	2		Para Hydrogen	Para Hydrogen
	3		Ortho Hydrogen	Ortho Hydrogen
Moderator		H(ZrH) H (CaH2)	H(ZrH)	H(ZrH)
and heav	y water	→ (D(D2O))	D(D20)	D(D2O)
react	ors		Para Deuterium	Para Deuterium
Teact	013		Ortho Deuterium	Ortho Deuterium
	26	Be metal	Be metal	Be metal
	27		Be(BeO)	Be(BeO)
	28		O(BeO)	
	31	Graphite	Graphite	Graphite
	33	_	Liquid Methane	Liquid Methane
	34		Solid Methane	Solid Methane
	37	H(CH2)	H(CH2)	
	40		Benzine	Benzine
	45		Al metal	
	52	Mg metal		
	56		Fe metal	
	58		Zr(ZrH)	Zr(ZrH)
	59	Ca(CaH2)		
	75		O(UO2)	
	76		U(UO2)	
	Number of materials	9	20	Crista
	,			lattice e

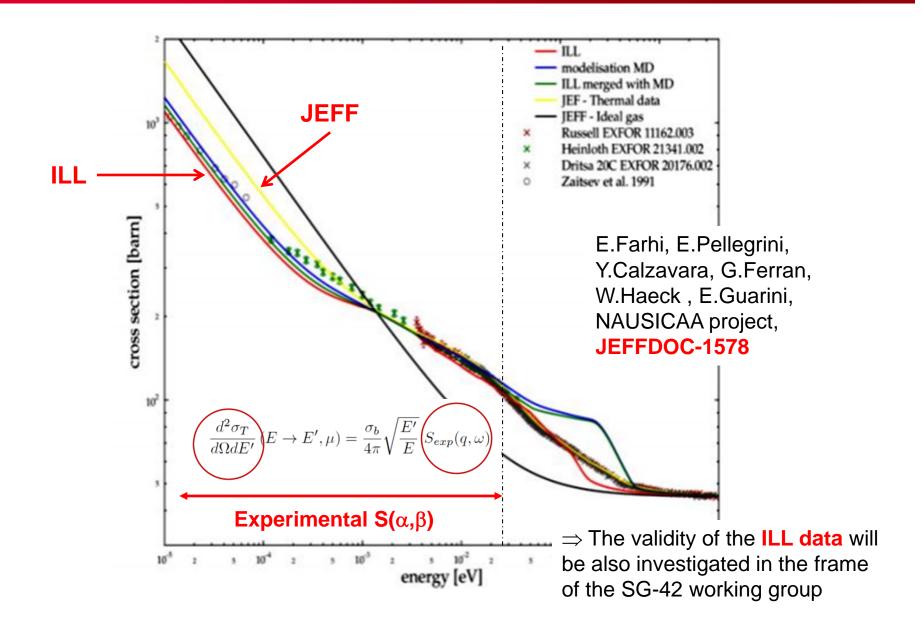
Capture of neutrons by atoms in a crystal lattice

Am241 transmission measurements at the GELINA facility, IRMM, Geel

C. Lampoudis et al. Eur. Phys. J. Plus, 128, 86 (2013)



Free Gas Model (FGM) with an effective temperature


Cristal Latice Model (CLM) with the Dolling's phonon spectrum

Scattering of neutrons by Hydrogen bound in water

Scattering of neutrons by Hydrogen bound in water

Ten years after the release of the latest "scattering data" files, R&D activities on this topic are no longer discussed within the JEFF project.

Mat.	JEFF-3.1.1	Temp. (K)	Year	Authors	Institute	Code
1	H(H20)	293.6 323.6 373.6 423.6 473.6 523.6 573.6 623.6 647.2 800.0 1000.0	Jan. 2004	J. Keinert M. Mattes	Karlsruhe Institute of Technology	LEAPR NJOY-99.90++

Needs for new measurements of the scattering laws + total cross section in « cold » and HZP conditions are needed (steps of 10°C + as a function of pH ?) ⇒ production of covariance matrices

Perspectives

Ten years after the release of the latest "scattering data" files, R&D activities on this topic are no longer discussed within the JEFF project.

Mat.	JEFF-3.1.1	Temp. (K)	Year	Authors	Institute	Code
1	H(H20)	293.6 323.6 373.6 423.6 473.6 523.6 573.6 623.6 647.2 800.0 1000.0	Jan. 2004	J. Keinert M. Mattes	Karlsruhe Institute of Technology	LEAPR NJOY-99.90++

Needs for an improved version of LEAPR (or new code) to account for Molecular Dynamic calculations and new experimental results?

TSL activities in 2015

- NAUSICAA collaboration: First workshop in July 2014 was the kick-off meeting of a collaborative project aiming to increase the accuracy of thermal neutron cross section data thanks to a new way to evaluate these data (ILL initiative)
 - ⇒ New meeting : 29-30 June 2015 at ILL
- Wonder 2015, 4th International Workshop on Nuclear Data Evaluation for Reactor Applications: organized at Aix en Provence 5-8 October 2015
- Proposal for a JEFF working group on "thermal scattering law data file": kick off meeting at the NEA during the JEFF meeting of November 2015
- Consultant's Meeting on Experimental Nuclear Reaction Data (EXFOR) Compilation
 of Thermal Neutron Scattering Data: organized in November 2015 at the AIEA

- A.I. Hawari, Modern Techniques for Inelastic Thermal Neutron Scattering Analysis, Nuclear Data Sheets 118 (2014) 172–175
- J.C. Holmes and A.I. Hawari, Generation of an $S(\alpha, \beta)$ Covariance Matrix by Monte Carlo Sampling of the Phonon Frequency Spectrum, Nuclear Data Sheets 118 (2014) 392–395 (+PhD thesis)
- M.L. Zerkle, Generation of TSL for YH2 using ab initio methods, Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014
- J.I. Marquez Damian, J.R. Granada and D.C. Malaspina, CAB model for water: a new evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format, Annals of Nuclear Energy 65 (2014) 280–289
- E. Farhi et al., Light and heavy water dynamic structure factor for neutron transport codes, Journal of Nuclear Science and Technology 52, 844 (2015)
- Y. Abe and S. Tasaki, Molecular dynamics analysis of incoherent neutron scattering from light water via the Van Hove space—time self-correlation function with a new quantum correction, Annals of Nuclear Energy 83 (2015) 302–308

• ...

Detailed time schedule

year	period	activities		
2015	Мау	Start of SG activities at the NEA: Review of the experimental facilities and on-going work Review of the existing/new "evaluation methodologies" Review of the existing Evaluated Nuclear Data File in ENDF-6 format Selection of the benchmarks of interest		
	May-June	Collect evaluation in ENDF-6 format		
	June- Dec.	Processing and Benchmarking Status/performance of available data		
	Jan-May	Begin to reflect on the generation of covariance data		
2016	Мау	Status of the one-year activity: • Presentation of the experimental programs • Presentation of the benchmark results • Review of the methodologies for producing covariance data • Needs for improving the evaluation		
	May-July	Collect experimental data of interest for covariance		
	July-Dec.	Applied methodologies for producing covariance data		
2017	May	Status of the two-year activities: • Presentation of the experimental results • Presentation of the covariance data • Presentation of the improved evaluations		
	May-Dec.	Begin to reflect on the nuclear data format		
	Jan-May	Monte-Carlo and deterministic uncertainty propagation work		
2018	May	Status of the three-years activities Proposal for a draft version of the final report that includes recommendation for future experimental works, evaluations and covariance		

Kick off meeting 18-19 May 2015

Detailed time schedule

year	period	activities
2015	Мау	Start of SG activities at the NEA: Review of the experimental facilities and on-going work Review of the existing/new "evaluation methodologies" Review of the existing Evaluated Nuclear Data File in ENDF-6 format Selection of the benchmarks of interest
	May-June	Collect evaluation in ENDF-6 format
	June- Dec.	Processing and Benchmarking Status/performance of available data
	Jan-May	Begin to reflect on the generation of covariance data
2016	Мау	Status of the one-year activity: • Presentation of the experimental programs • Presentation of the benchmark results • Review of the methodologies for producing covariance data • Needs for improving the evaluation
	May-July	Collect experimental data of interest for covariance
	July-Dec.	Applied methodologies for producing covariance data
2017	Мау	Status of the two-year activities: • Presentation of the experimental results • Presentation of the covariance data • Presentation of the improved evaluations
	May-Dec.	Begin to reflect on the nuclear data format
2018	Jan-May	Monte-Carlo and deterministic uncertainty propagation work
	Мау	Status of the three-years activities Proposal for a draft version of the final report that includes recommendation for future experimental works, evaluations and covariance

- CAB model: H(H20), D(D20), O(H20)
- ILL data : H(H20), D(D20) ?
- ...
- + LEAPR model parameters ?

Define a set of dedicated ICSBEP benchmarks?

Intermediate report end of 2015?