

EUROPEAN SPALLATION SOURCE

Properties of H₂O confined in Silica Mirco-spheres From Los Alamos to Lund

Günter Muhrer WG-42 kick-off meeting

www.europeanspallationsource.se May 19, 2015

LANSCE – Los Alamos Neutron Science Center

Moderator Materials

Water as a neutron moderator – why not stick with it?

- Relatively high hydrogen concentration
- Operational advantages (easy cooling, cheap & abundant)
- Limited operation temperature range !
- Next generation neutron source
 - More neutrons AND broader wavelength range (very-cold neutron regime)
 - More flexible operating range (100-300K)
- Solutions
 - Use materials that are liquid or solid at r.t. (no phase transition(s) or predictable phase transitions while cooling)
 - Adsorb materials on a surface to prevent phase transition while cooling.

Next generation: Choosing the right moderator temperature for each experiment ?

Water in Silica Microspheres

EUROPEAN SPALLATION SOURCE

Silica is inert/ lightweight

• 40 weight-% water in silica

SEM of the silica spheres

EUROPEAN SPALLATION SOURCE

Spheres are agglomerated

- Room for water in the spaces between the spheres?
- Three different sizes of spheres are present:
 - d = 2.4 μm
 - d = 1.5 μm
 - d = 600 nm

Water in Confined Geometry

• Confined Geometry

- has a strong effect on hydrogen bonded networks
- causes water to be supercooled (e.g. water in mesoporous silica with pores of 35 Å to about -40 °C)
- can lead water to forms certain forms of ice (e.g. mesoporous silica with pores of 35 Å forms cubic ice in the pores) *Dore et al. J. Phys. Condens. Mater* 16(2004)5449
- IINS Excitation spectra, vibrations
- SANS Where is the water?
- Transmission measurements Total scattering cross section

Filter Difference Spectrometer (FDS)

EUROPEAN SPALLATION SOURCE

Energy transfer: $6-620 \text{ meV} (50-5000 \text{ cm}^{-1})$
2-5 % resolutionBeam size at sample2.5 cm x 10 cm (W x H)Sample size0.5 - 100 gDetector ^{3}He tubes (60)Filter analyzersBe (refrigerated)

IINS Data of H₂O in Silica Spheres

- IINS: Incoherent Inelastic Neutron Spectroscopy
- Water at 250 K is still liquid
- Modes for liquid H₂O:
 - Librational bands of "free" water: 550-1000 cm⁻¹
 - OH-bending: 1645 cm⁻¹
 - OH-stretch: 3280-3920 cm⁻¹

IINS Data of H₂O in Silica Spheres

Modes for frozen water in silica spheres

- Shift of librations to fairly low wavenumbers (300 cm⁻¹)
- surface interaction

Low-Q Diffractometer (LQD)

SANS: Kratky plot

SANS: Fitting models

Broad Peak model:

$$I(Q) = \frac{A}{Q^{n}} + \frac{C}{1 + (|Q - Q_{0}|\xi)^{m}} + B$$

Guinier-Porod model:

$$I(Q) = \frac{G}{Q^s} e^{-\frac{Q^2 R_g^2}{3-s}} : \forall Q \le Q_1$$
$$I(Q) = \frac{D}{Q^m} : \forall Q \ge Q_1$$
$$Q_1 = \frac{1}{R_g} \sqrt{\frac{(m-s)(3-s)}{2}}$$
$$D = G e^{-\frac{Q_1^2 R_g^2}{3-s}} Q_1^{m-s}$$

SANS Data of dry Silica Spheres

SANS Data of Silica Spheres with H₂O

•

0.1

SANS Data of Silica Spheres with D₂O

 The fission chamber detector measures the timedependent neutron beam flux after passing through the sample by using the 235U(n,f) standard reaction.

Total Cross Section of H₂O in Silica Spheres

Properties of H₂O in SiO₂

- no OH-bending mode (E=208mV)
- more phonon modes at low energies
- solidification below 250K
- water confined in spheres (R~30Å)
- spheres build Gaussian chains
- correlation length of the chains is about 250Å

EUROPEAN SPALLATION SOURCE

Blue Room Experiment H₂O / Silica-spheres

Ratio: H₂O/silica : H₂O Experiment calculation 10-2 10-1 Energy (eV)

"Real-size" moderator testing

Ratio

1.5

0.5

10-3

Spectrum ("Maxwellian") is shifted to lower energy -"colder" spectrum

Proof of principle that shape of spectrum can be manipulated through confinement (usually spectrum defined by material)

Lujan Neutron Scattering Center

Road to realizing the world's leading facility for research using neutrons

December 9

EUROPEAN

- Build up scattering kernel competence
- Build up experimental program to develop scattering laws for materials of interest for target physics
- Add small angle scattering to NJOY

Acknowledgement

- Blue Room, Michal Mocko
- Filter Difference Spectrometer FDS (IINS), Luke Daemen, Monika Hartl
- Low-Q Diffractometer (SANS), Monika Hartl, R. Hjelm
- FP5 (Transmission Spectra), Michal Mocko
- **SEM** pictures were taken at MST-6 (LANL)
- This work has been benefited from the use of the Manuel Lujan, Jr. Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under DOE Contract DE-AC52-06NA25396.