DE LA RECHERCHE À L'INDUSTRIE

Reactivity temperature coefficient interpretation of Mistral benchmarks with different thermal scattering laws.

Juan Pablo Scotta^[1]

Ignacio Marquez Damian^[2]

Gilles Noguere^[1]

David Bernard^[1]

19/05/2015 WPEC meeting, Paris

www.cea.fr

[1] SPRC/LEPh, CEA Cadarache[2] Física de Neutrones, Centro Atomico Bariloche

> Objectives

> Introduction

- Thermal neutron scattering: inelastic scattering.
- Model for light water molecule H into H2O
 - ✓ IKE model
 - ✓ CAB model
- Mistral Program Benchmark (Mistral-1, Mistral-2, Mistral-3)

Calculation scheme

- Crystal lattice effects in fuel
- Materials thermal expansion

> Results

- Interpolation of IKE model parameters for JEFF 3.1.1
- Interpolation of IKE model parameters for ENDF/B-VII.1
- TSL files obtained with CAB model
- Mistral-1
- Mistral-2
- Mistral-3

> Conclusions

Objectives

- Perform Monte Carlo calculations taking into account chemical bindings of H1 in H2O molecule.
- Test of different thermal scattering law files for H(H2O).
- Interpretation of integral measurements carried out at EOLE reactor in CEA Cadarache.

THERMAL NEUTRON SCATTERING: Inelastic scattering

Double differential scattering cross section for thermal neutrons:

 $\beta = \frac{E'-E}{\nu T}$ energy transfer

| PAGE 4

THERMAL NEUTRON SCATTERING: Inelastic scattering

Approximations for evaluating the thermal scattering law:

-*Incoherence approximation*: $\sigma(H^1) = \sigma_{coh} + \sigma_{inc} \approx \sigma_{inc}$ We can neglect interference phenomena between waves reflected by close nuclei.

$$S_{s}(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} I_{s}(\alpha,t) dt$$

- Using the *Gaussian approximation*, which consists of an approximation of the intermediate scattering function by a Gaussian:

$$S_{s}(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} e^{-\gamma(t)} dt$$

$$P(\beta) = \frac{\rho(\beta)}{2\beta \sinh(\beta/2)}$$

$$\gamma(t) = \alpha \int_{-\infty}^{\infty} P(\beta) \left[1 - e^{-i\beta t}\right] e^{-\beta/2} d\beta$$

$$\gamma(t): \text{ width function}$$

$$\rho(\beta) \qquad \qquad \checkmark \quad \text{Information about the excitation states of the scattering material.}$$

$$\checkmark \quad \text{Obtained through experimental measures or molecular dynamic simulations.}$$

MODEL FOR LIGHT WATER MOLECULE H INTO H2O

What are the possibilities of vibration of the molecule?

MODEL FOR LIGHT WATER MOLECULE H INTO H2O

Frequency spectrum of IKE model for JEFF - 3.1.1 and ENDF/B-VII.1

┿

Effective temperature dependent masses, with weight $\omega_{T} \quad \rho_{j}(\beta) = \rho_{i}(\beta)$

MODEL FOR LIGHT WATER MOLECULE H INTO H2O

Frequency spectrum of CAB Model (Molecular dynamics simulation with GROMACS code - Ignacio Marquez Damian)

+

+

Rotational mode (temperature dependent)

Intramolecular mode

Molecular diffusion (temperature dependent) (Egelstaff-Schofield model)

$$S_{t}(\alpha,\beta) = \frac{2cw_{t}\alpha}{\pi} e^{[2c^{2}w_{t}\alpha-\beta/2]} \frac{\sqrt{c^{2}+1/4}}{\sqrt{\beta^{2}+4c^{2}w_{t}^{2}\alpha^{2}}} K_{1}\left\{\sqrt{c^{2}+1/4}\sqrt{\beta^{2}+4c^{2}w_{t}^{2}\alpha^{2}}\right\}$$

K1(x) is the modified Bessel function of first kind

 $c = \frac{M_H D}{w_t \hbar}$ is the dimensionless diffusion constant

D is the molecular diffusion constant

2 discrete oscillators for bending (0.205 eV) and stretching modes (0.430 eV)

MISTRAL PROGRAM BENCHMARK

- 750 3.7% UOX cells
- 17 guide tubes
- Cell pitch 1.32 cm •
- Moderation ratio 1.7 •
- Moderator: $H_2O+H_3BO_3$
- Reactivity control: $C_B = f(T)$ ٠

- 1600 7% MOX cells
- 17 guide tubes ٠
- Cell pitch 1.32 cm •
- Moderation ratio 1.7 •
- Moderator: H₂O •
- Reactivity control: 8.7% MOX pins ٠

- 1400 7% MOX cells
- 17 guide tubes ٠
- Cell pitch 1.39 cm ٠
- Moderation ratio 2.1
- Moderator: $H_2O+H_3BO_3$ ٠
- Reactivity control: $C_B = f(T)$ ٠

DE LA RECHERCHE À L'INDUSTRIE

CEA CALCULATION SCHEME

CRYSTAL LATTICE EFFECTS IN FUEL

Temperature measurement range 5°C - 80°C

- ✓ Aluminium grid: increases the pitch, increases moderation ratio and decreases resonance absorption.
- Aluminium overcladding: opposite effect because its aim is to remove moderator and compensates the increase in the moderation ratio.
- ✓ Fuel: volume change of ~0.3%. Has impact on the resonance absorption.

Taking as reference the total cross section of JEFF - 3.1.1, it was verified that the calculated cross sections were correctly obtained and in coherence with the official library.

ECHERCHE À L'INDUSTRI

Comparison between Total XS obtained with TSL from JEFF-3.1.1 and ENDF/B-VII.1

- ✓ <u>Minor discrepancies</u> for E<25meV
- \checkmark σ(ENDF/B-VII.1)> σ(JEFF-3.1.1) ∀Energy
- ✓ <u>Possible trend</u>: difference increases with T

Comparison between Total XS obtained with TSL from JEFF-3.1.1 and CAB model

T=10°C

CHERCHE À L'INDUSTRI

- ✓ Important discrepancies for E<10⁻⁴eV.
- \checkmark σ(JEFF-3.1.1)> σ(CAB) ∀Energy
- <u>Possible trend</u>: difference decreases with T

DE LA RECHERCHE À L'INDUSTR

CEA RESULTS: MISTRAL-1

Mistral-1 reactivity difference C-E $\Delta \rho$ (pcm)

- TRIPOLI4 code + JEFF-3.1.1
- TRIPOLI4 code + CAB
- TRIPOLI4 code + ENDF/B-VII.1

Third order polynomial fitting

 $\Delta \rho = AT^3 + BT^2 + CT + D$

Being JEFF-3.1.1 the reference library, CAB and ENDF/B-VII TSL overestimate calculated reactivity in all temperature range.

- ✓ Mean difference between CAB and JEFF-3.1.1 = +100 pcm.
- ✓ Mean difference between ENDF/B-VII and JEFF-3.1.1 = +65 pcm.

Mistral-1 reactivity temperature coefficient error $\Delta \alpha$ (pcm/°C)

- TRIPOLI4 code + JEFF-3.1.1
- TRIPOLI4 code + CAB
- TRIPOLI4 code + ENDF/B-VII.1
- APOLLO2 code + JEFF-3.1.1

Mistral - 1 RTC error (C-E) pcm/°C				
	6°C to 40°C	40°C to 80°C	6°C to 80°C	
Uncertainty	±0.4	±0.4	±0.3	
JEFF - 3.1.1	+0.4	-0.8	-0.3	
САВ	+0.5	-0.5	+0.0	
ENDF/B-VII.1	+0.2	-0.6	-0.3	

✓ Same tendency for all TSL.

 \checkmark

 \checkmark

T<40°C spectral component of the error in RTC correctly accounted $\rightarrow \sigma_{\gamma}/\sigma_f(U^{235})$ ok

T>60°C underestimation of RTC (water density change effect).

✓ Target accuracy of 1 pcm/°C for RTC error is achieved

DE LA RECHERCHE À L'INDUSTR

CEA RESULTS: MISTRAL-2

Mistral-2 reactivity difference C-E $\Delta \rho$ (pcm)

- TRIPOLI4 code + JEFF-3.1.1
- TRIPOLI4 code + CAB
- TRIPOLI4 code + ENDF/B-VII.1

Third order polynomial fitting

 $\Delta \rho = AT^3 + BT^2 + CT + D$

Still same tendency as Mistral-1: overestimation of calculated reactivity for CAB and ENDF/B-VII TSL.

- ✓ Mean difference between CAB and JEFF-3.1.1 = +180 pcm (more accentuated for MOX??)
- ✓ Mean difference between ENDF/B-VII and JEFF-3.1.1 = +80 pcm (equivalent to Mistral-1).

- ✓ Still the same tendency for all TSL.
- ✓ Underestimation of RTC throughout all temperature range, for all cases.
- ✓ No appreciable difference in behavior at low and high temperature.
- ✓ Mean error in RTC from 10°C to 80°C still below 1 pcm/°C.

Mistral-3 reactivity difference C-E $\Delta \rho$ (pcm)

- TRIPOLI4 code + JEFF-3.1.1
- TRIPOLI4 code + CAB
- TRIPOLI4 code + ENDF/B-VII.1

Third order polynomial fitting

 $\Delta \rho = AT^3 + BT^2 + CT + D$

Same trend as Mistral-2.

- ✓ Mean difference between CAB and JEFF-3.1.1 = +140 pcm. (equivalent to Mistral-2)
- ✓ Mean difference between ENDF/B-VII and JEFF-3.1.1 = +60 pcm (same result as Mistral-1 and Mistral-2).

Mistral-3 reactivity temperature coefficient error $\Delta \alpha$ (pcm/°C)

- TRIPOLI4 code + JEFF-3.1.1
- TRIPOLI4 code + CAB
- TRIPOLI4 code + ENDF/B-VII.1
- APOLLO2 code+JEFF-3.1.1

Mistral - 3 RTC error (C-E) pcm/°C				
	10°C to 40°C	40°C to 80°C	10°C to 80°C	
Uncertainties	±0.5	±0.5	±0.4	
JEFF - 3.1.1	-1.2	-1.1	-1.1	
САВ	-0.7	-0.7	-0.7	
ENDF/B-VII.1	-1.0	-1.0	-1.0	

- ✓ Still the same tendency for all TSL.
- ✓ Like $\Delta \alpha$ in Mistral-2, there is underestimation of RTC throughout all temperature range, except at 10°C and 80°C (biggest uncertainties in these measures).
- ✓ For MOX lattices, the spectral component of the RTC error is correctly predicted (T<40°C) supports change in $\sigma_{\gamma}/\sigma_f(Pu^{239})$ in thermal range of JEFF-3.1 library.

Mean RTC error in pcm/°C (10°C – 80°C)

- Mistal-1benchmark (representative of a UOX slightly over moderated lattice).
 - ➤ JEFF-3.1.1 = -0.3 ± 0.3
 - \blacktriangleright ENDF/B-VII.1 = -0.5 ± 0.3
 - \blacktriangleright CAB model = 0.0 ± 0.3
- Mistal-2benchmark (representative of a MOX slightly over moderated lattice).
 - ➤ JEFF-3.1.1 = -0.8 ± 0.3
 - \blacktriangleright ENDF/B-VII.1 = -1.0 ± 0.3
 - > CAB model = -0.7 ± 0.3
- Mistal-3benchmark (representative of a MOX over moderated lattice).
 - \blacktriangleright JEFF-3.1.1 = -0.9 ± 0.4
 - > ENDF/B-VII.1 = -0.8 ± 0.4
 - > CAB model = -0.5 ± 0.4
- ✓ The spectral component of the discrepancy in the reactivity coefficient remains between acceptable margins for Mistral-2 and Mistral-3.
- ✓ A different approach for creating TSL files, molecular dynamics simulation, was assessed. For all tested TSL, similar trends are achieved ■
 IKE model used in JEFF 3.1.1 library is quite satisfactory.