Needs for improving TSL data file for H in CaH₂ and Ca in CaH₂

Gilles NOGUERE CEA Cadarache

Calcium Hydride (CaH₂) was used in several experiments performed in the fast reactors MASURCA (CEA Cadarache, France) and PHENIX (CEA Marcoule, France) for transmutation studies. The goal of these experiments (COMODORE-4, COSMO-3, ECRIX-H) was to study the neutronic properties of CaH₂ in cold and hot conditions. Table 1 shows the impacts of H in CaH₂ in the frame of the ECRIX-H experiment designed for the transmutation of Am241. The experiment consists in irradiating Am241 samples in a CaH₂ can. If no TSL data are used, results indicates that the final Am241 and Am242m is underestimated by 27.2% and 34.5%. If TSL data of H in CaH₂ are replaced by H in ZrH, the underestimation is close to 3.9% and 4.6% (ZrH and CaH₂ seem to have similar neutronic properties).

In order to interpret the ECRIX-H experiment with the TRIPOLI (Monte-Carlo) and ERANOS (deterministic) codes, an experimental program was carried out at the ILL facility for measuring the phonon spectrum of CaH₂ (Cf. JEFDOC 1053) and to produce TSL data for the JEFF library with the LEAPR module of NJOY. A careful validation of the resulting TSL data was never performed.

U234 4.0% -0.7% -0.4% -6.6% U235 -0.3% 0.5% 0.1% -6.2% U236 6.8% 2.1% 0.8% 0.1% Np237 -16.1% -6.4% -2.2% 3.9% Pu238 -4.9% -1.0% -0.5% -6.5% Pu239 -3.7% -1.7% -0.6% 17.6% Pu240 4.5% 0.7% 0.6% 2.5% Pu241 5.3% 1.9% 0.6% 5.4% Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am243 -2.7% -1.1% -0.2% -1.0% Cm243 -8.8% -2.7% -0.9% -3.6% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0%	Hydrogène lié dans…	libre	H₂O	ZrH _x	CH2
U235 -0.3% 0.5% 0.1% -6.2% U236 6.8% 2.1% 0.8% 0.1% Np237 -16.1% -6.4% -2.2% 3.9% Pu238 -4.9% -1.0% -0.5% -6.5% Pu239 -3.7% -1.7% -0.6% 17.6% Pu240 4.5% 0.7% 0.6% 2.5% Pu241 5.3% 1.9% 0.6% 5.4% Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm246 8.0%	U234	-4.0%	-0.7%	-0.4%	-6.6%
U236 6.8% 2.1% 0.8% 0.1% Np237 -16.1% -6.4% -2.2% 3.9% Pu238 -4.9% -1.0% -0.5% -6.5% Pu239 -3.7% -1.7% -0.6% 17.6% Pu240 4.5% 0.7% 0.6% 2.5% Pu241 5.3% 1.9% 0.6% 5.4% Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0%	U235	-0.3%	0.5%	0.1%	-6.2%
Np237 -16.1% -6.4% -2.2% 3.9% Pu238 -4.9% -1.0% -0.5% -6.5% Pu239 -3.7% -1.7% -0.6% 17.6% Pu240 4.5% 0.7% 0.6% 2.5% Pu241 5.3% 1.9% 0.6% 5.4% Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am242m -34.5% -12.2% -4.6% 0.2% Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3%	U236	6.8%	2.1%	0.8%	0.1%
Pu238 -4.9% -1.0% -0.5% -6.5% Pu239 -3.7% -1.7% -0.6% 17.6% Pu240 4.5% 0.7% 0.6% 2.5% Pu241 5.3% 1.9% 0.6% 5.4% Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am242m -34.5% -12.2% 4.6% 0.2% Am243 -2.7% -1.1% -0.2% -1.0% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7%	Np237	-16.1%	-6.4%	-2.2%	3.9%
Pu239 -3.7% -1.7% -0.6% 17.6% Pu240 4.5% 0.7% 0.6% 2.5% Pu241 5.3% 1.9% 0.6% 5.4% Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am242m -34.5% -12.2% -4.6% 0.2% Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -0.6% -0.3% -6.5% Np -16.1%	Pu238	-4.9%	-1.0%	-0.5%	-6.5%
Pu240 4.5% 0.7% 0.6% 2.5% Pu241 5.3% 1.9% 0.6% 5.4% Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am242m -34.5% -12.2% -4.6% 0.2% Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% <	Pu239	-3.7%	-1.7%	-0.6%	17.6%
Pu241 5.3% 1.9% 0.6% 5.4% Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am242m -34.5% -12.2% -4.6% 0.2% Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.6%	Pu240	4.5%	0.7%	0.6%	2.5%
Pu242 -1.1% -0.4% 0.0% 0.0% Am241 -27.2% -11.0% -3.9% 14.8% Am242m -34.5% -12.2% -4.6% 0.2% Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5%	Pu241	5.3%	1.9%	0.6%	5.4%
Am241 -27.2% -11.0% -3.9% 14.8% Am242m -34.5% -12.2% -4.6% 0.2% Am243 -2.7% -11.% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% <t< th=""><th>Pu242</th><th>-1.1%</th><th>-0.4%</th><th>0.0%</th><th>0.0%</th></t<>	Pu242	-1.1%	-0.4%	0.0%	0.0%
Am242m -34.5% -12.2% -4.6% 0.2% Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% 4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% <th>Am241</th> <td>-27.2%</td> <td>-11.0%</td> <td>-3.9%</td> <td>14.8%</td>	Am241	-27.2%	-11.0%	-3.9%	14.8%
Am243 -2.7% -1.1% -0.2% -1.0% Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3%	Am242m	-34.5%	-12.2%	-4.6%	0.2%
Cm242 -9.3% -3.2% -1.2% 1.5% Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Am243	-2.7%	-1.1%	-0.2%	-1.0%
Cm243 -8.8% -2.7% -0.9% -3.6% Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Cm242	-9.3%	-3.2%	-1.2%	1.5%
Cm244 3.9% 1.4% 0.4% 0.2% Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Cm243	-8.8%	-2.7%	-0.9%	-3.6%
Cm245 -3.1% 0.0% -0.3% -11.7% Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Cm244	3.9%	1.4%	0.4%	0.2%
Cm246 8.0% 2.1% 0.8% 8.4% Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Cm245	-3.1%	0.0%	-0.3%	-11.7%
Cm247 7.3% 1.8% 0.7% 9.3% Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Cm246	8.0%	2.1%	0.8%	8.4%
Cm248 14.8% 4.3% 1.3% 13.0% NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Cm247	7.3%	1.8%	0.7%	9.3%
NL -3.7% -1.0% -0.4% -1.9% U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Cm248	14.8%	4.3%	1.3%	13.0%
U -3.7% -0.6% -0.3% -6.5% Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	NL	-3.7%	-1.0%	-0.4%	-1.9%
Np -16.1% -6.4% -2.2% 3.9% Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	U	-3.7%	-0.6%	-0.3%	-6.5%
Pu -3.6% -0.9% -0.4% -2.6% Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Np	-16.1%	-6.4%	-2.2%	3.9%
Am -11.5% -4.6% -1.5% 4.4% Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Pu	-3.6%	-0.9%	-0.4%	-2.6%
Cm 1.9% 0.8% 0.2% -1.7% TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Am	-11.5%	-4.6%	-1.5%	4.4%
TF 7.0% 1.9% 0.8% 3.5% TT 0.8% 0.3% 0.1% -0.3%	Cm	1.9%	0.8%	0.2%	-1.7%
TT 0.8% 0.3% 0.1% -0.3%	TF	7.0%	1.9%	0.8%	3.5%
	TT	0.8%	0.3%	0.1%	-0.3%

New experimental program and theoretical calculations are needed to validate/improve the TSL data of CaH2.

Table 1: Impacts of the TSL data of H in CaH_2 on the calculated isotopic concentrations (ECRIX-H experiment.

Scattering Cross Sections for H in CaH₂ and Ca in CaH₂ **Thermal Neutron**

O. Serot

CEA - Cadarache, DEN / DER / SPRC / LEPh, Bat. 230, F- 13108 St Paul lez Durance CEDEX, France

JEFF Meeting / 24 - 26 November 2004

CaHx phonon frequency spectrum measurement

- Samples
- Experimental setup
- Measurement and data reduction
- Interpretation
- **4** Thermal neutron scattering cross section for H in CaH₂
- Formalism
- NJOY calculations
- Results

+ Thermal neutron scattering cross section for Ca in CaH₂

+ Conclusion and outlook

 In the frame of possible methods for the transmutation of actinides and/or long lived fission products: experimental programs have been proposed to investigate the neutronic characteristics of fast reactor cores containing small quantities of various moderator materials: Bod C: ECRIX-C experimental COSMO: ECRIX-C experimental 	 Validation of these experimental programs must be done from deterministic and stochastic neutronic codes (ERANOS, MCNP) Thermal inelastic scattering cross sections are needed: thermal data already exist for zirconium hydride,
---	---

Context (2)
 Interests in using CaH₂ moderator material: Relatively stable in liquid sodium, Good mechanical properties, High density of Hydrogen,
No activation by neutron irradiation.
n this context, and due to the lack of information on H-CaHx thermal cross section:
A measurement of the CaHx phonon frequency spectrum at the ILL High Flux Reactor facility in Grenoble (France) has been carried out

B

This experiment has been performed by: <i>P. Morris, D.K. Ross, S. Ivanov, D.R. Weaver and O. Serot</i> All the details can be found in Ref [1] Samples used: Impurity in CaHx sample is made of Ca(OH) ₂ due to the high affinity for hydrogen binding with oxygen from the ai bigh affinity for hydrogen binding with oxygen from the ai CaH _x unexposed to air (~95% pure) CaH _x unexposed to air (~95% pure) • Ca(OH) ₂ (for reference) • Ca(W) ₂ (for refe	_	CaHx Phonon frequency spectrum measurement (1)
 Samples used: Impurity in CaHx sample is made of Ca(OH)₂ due to the high affinity for hydrogen binding with oxygen from the ai bing affinity for hydrogen binding with oxygen from the ai So, three samples (powder samples) were used: So, three samples (powder samples) were used: CaH_x unexposed to air (~95% pure) CaH_x exposed to air (~95% pure) CaH_x exposed to air during 12 hours The exact stochiometry of the samples is not current known but is thought to be close to two (x~2). 	8	This experiment has been performed by: <i>P. Morris, D.K. Ross, S. Ivanov, D.R. Weaver and O. Serot</i> All the details can be found in Ref [1]
 So, three samples (powder samples) were used: CaH_x unexposed to air (~95% pure) Ca(OH)₂ (for reference) CaH_x exposed to air during 12 hours The exact stochiometry of the samples is not current known but is thought to be close to two (x~2). 	3	Samples used: Impurity in CaHx sample is made of $Ca(OH)_2$ due to the high affinity for hydrogen binding with oxygen from the air.
The exact stochiometry of the samples is not current known but is thought to be close to two $(x \sim 2)$.		 So, three samples (powder samples) were used: CaH_x unexposed to air (~95% pure) Ca(OH)₂ (for reference) CaH_x exposed to air during 12 hours
		The exact stochiometry of the samples is not currently known but is thought to be close to two $(x\sim2)$.

Detector	Cattx Phonon Irequency spec Three Axis Spectrometer (IN1 at La Sample Table (IN1 at La Catende Dorive Catende Dorive) Catende Dorive Catende Dorive Catende Dorive Catende Dorive Ca	up: up: ue Langevin Institute) ue Langevin Institute) + Axis Monochromator - Sample: Sample: Select the energy of the incident neutrons, according to the Bragg's diffraction law. + Axis Sample - Analyser: Select the scattering angle (fixed
The energ incide	Analyser Analyser Analyser Analyser Becondary Shutter I.ead Drum Monochromator Monochromator Monochromator Monochromator Monochromator Monochromator Monochromator Monochromator Monochromator Monochromator Shielding Drum Monochromator String Drum Monochromator Monochro	 In our experiment). + Axis Analyser - Detector: Select only the scattered neutrons with about 4 meV. + Neutron Monitor: Control the flux of the incident neutrons. A total count of 250,000 was accumulated for each energy point before moving to the next.

JEFF Meeting / 24 - 26 November 2004

ω

JEFF Meeting / 24 - 26 November 2004

	CaHx Phonon frequency spectr	um measurement	0
	Interpretation of the CaHx phonon fi	equency spectrun	7
2	One acoustic mode around 20 meV which corresponds to	1rst Optical mode	
)	F		

20 meV which corresponds to
 vibrations where the motions of the H and Ca atoms are in phase; This mode could be in principle described by a Debye spectrum;

- Two optical modes:
- between 75 and 105 meV,
 between 110 and 140 meV
 Correspond to the vibrations of the H-atoms from two different sites.
- Fine structure or sub-peaks visible in each optical mode

Consistent with the known crystal structure of CaHx, which has two H sites, one a distorted octahedral site (lower band) and the other a distorted tetrahedral site (upper band) (see Ref. [4,5,6])

	Thermal neutron scattering cross section for H in CaH_2 (1)
	Formalism
8	It can be shown that the double differential scattering cross section of solids consisting of randomly ordered micro crystals takes the form (see
	Ref.[7]): $\frac{d\sigma}{d\Omega dE} = \frac{\sigma_{\rm b}}{2KT} \sqrt{\frac{E'}{E}} S(\alpha, \beta)$
	S(α, β) is the so-called scattering laws that need to be calculated for the given material,
	$\sigma_{b} = characteristic bound scattering cross section for the material E, E': incident and scattered neutron energies in the lab frame$
	The dimensionless parameters α and β take the forms:
	$\int \alpha = \frac{E' + E - 2\mu\sqrt{E'E}}{AkT} \longrightarrow Momentum transfer$
	$\beta = \frac{E^2 - E}{kT}$ Energy transfer
- JEFF M€	eeting / 24 - 26 November 2004

ss section for H in CaH ₂ (2)	Issian approximations, the	Where $\rho(\beta)$ is the phonon	frequency spectrum, usually found by direct measurement:	$\int_0^\infty \rho(\beta) d\beta = 1$	honon expansion' expression:	For n=0 ; (zero phonon): Incoherent elastic term	For n>0 ; Incoherent inelastic terms	
Thermal neutron scattering cro	4 Working in the incoherent and gau S(α , β) takes the following form:	$\sum_{i=1}^{\infty} S(\alpha, \beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} e^{-\gamma(t)} dt$	with $\gamma(t) = \alpha \int_{-\infty}^{\infty} P(\beta) \left[1 - e^{-i\beta t} \right] e^{-\beta/2} d\beta$	and $P(\beta) = \frac{\rho(\beta)}{2\beta \sinh(\beta/2)}$	Expanding the $exp(-\gamma(t))$ term leads to the so-called	$S(\alpha, \beta) = e^{-\alpha\lambda} \sum_{i=1}^{\infty} \frac{1}{-(\alpha\lambda)^n} \tau_{\alpha}(\beta)$	Where λ is the Debye-Waller $\lambda = \int_{-\infty}^{\infty} P(\beta) e^{-\beta/2} d\beta$ coefficient:	

Thermal neutron scattering cross section for H in CaH₂ (3) similar assumption was adopted phonon frequency spectrum for factor must be increased by the H in ZrH2, has been calculated ratio: A_{Zr} / A_{ca} . In this way, we the weight of the acoustic part ■ In the case of the ZrH2, the by Slaggie [8]. He shows that assumed that this weighting obtained: 1/106 (0.94%). A The spectrum was obtained For H in CaH2, we have by Picton [9] for TiH2 using the following approximation: was: 1/242; Phonon frequency spectrum used for rigorous lattice dynamic model (see Ref. [10,11]). 80 100 120 140 160 180 200 Further investigations are needed on the matter. This weighting factor could be deduced from Energy transfer [eV] H in CaHx; 80 by: 1/106 weighted Acoustic Mode 6 20 ρ(ω) 0.010 0.015-0.005 -0.000 0.025 -0.020 -**Remark:**

NJOY Calculations : MAT=8 (H-CaH ₂) (performed for T= 296; 400; 500; 600; 700; 800; 1000 and 1200 K) (performed for T= 296; 400; 500; 600; 700; 800; 1000 and 1200 K) LEAPR Generates the thermal scattering data in ENDF format: File7 LEAPR MT=2 (elastic): Debye Waller factor given format: File7 MT MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT4 (inelastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 99,81 C _{ad} MT=2 (elastic): tabulated S(α ,B) MJOY 90,81 C _{ad} MT=2 (elastic): tabulated Hormat, File3: MJOY 90,81 C _{ad} MT=2 (elastic H-fire) ACER MCNP code in ACE format	I	I nei	rmal neut	ron scattering cross section for H in CaH ₂ (4)
LEAPR Generates the thermal scattering data in ENDF LEAPR mat: File7 ILEAPR MT=2 (elastic): Debye Waller factor given mat: File7 mat: File7 mat: File7 mat: File3 THERMR mates the pointwise thermal scattering cross sections in pendf format, File3: MODY coherent elastic H in CaH2 mates the thermal scattering cross sections in pendf format, File3: ACER MT=238: incoherent inelastic H in CaH2 MCNP code in ACE format MCNP code in ACE format	N J	JOY erfor	Calculati med for T=	ons : MAT=8 (H-CaH₂) 296; 400; 500; 600; 700; 800; 1000 and 1200 K)
Additional sections Calculates the pointwise thermal scattering cross sections in pendif format, File3: THERMR MT=2 : elastic H-free MT=2 : selastic H-free MT=237: incoherent elastic H in CaH2 MT=238: incoherent inelastic H in CaH2 MT=238: incoherent inelastic H in CaH2 ACER MCNP code in ACE format	ନ	p	EAPR	 Generates the thermal scattering data in ENDF format: File7 MT=2 (elastic): Debye Waller factor given MT4 (inelastic): tabulated S(α,β)
ACER MCNP code in ACE format			HERMR	 Calculates the pointwise thermal scattering cross sections in pendf format, File3: mT=2 : elastic H-free MT=237: incoherent elastic H in CaH2 MT=238: incoherent inelastic H in CaH2
			ACER	Generates the thermal scattering data for MCNP code in ACE format

JEFF Meeting / 24 - 20 November 2004

<u>0</u>

JEFF Meeting / 24 - 26 November 2004

Examples of secondary neutron energy spectra from H in CaH₂ for various incident neutron energies

JEFF Meeting / 24 - 26 November 2004

Thermal neutron scattering cross section for H in CaH_2 (7)

The ENDF file for H in CaH₂ is ready for JEFF3.1:

þ

0	Ч	7	m	4	ŋ	9	7	ω	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
100	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451	8 1451
	0	9	9	ω							К.		phonon		1)2			_				the energy	node, fine	the known		
	7	0	12	61	Cadarache						1000. 1200.		ts of CaH2	lux reactor	f the Ca(OF			e following			20 meV.	tively in t	ach optic m	ined from t		
er 2004	0	0	0	0	D.SEROT CEA			F			700. 800.		measuremen	ILL high f	cribution o			ined has th			d at around	ered respec) meV. In e	and expla	ref 2,3).	
ease Octobe	- 1	0	0	0	L-OCT04 0	T-OCT04	ERIAL 8	TERING DATA			500. 600.		s based on	med at the). The cont	d.		ctrum obtai			e, centered	bands cente	and 110-140	be observed	of CaH2 (1	
.0 file header. Rel	000+3 9.991700-1	0000+0 0.000000+0	0000+0 0.000000+0	0000+0 0.000000+0	2) EVA	DIS	FF-3.0 MAT	HERMAL NEUTRON SCAT	ENDF-6 FORMAT		ratures = $296.400.$		resent evaluation i	ency spectra perfor	oble/France) (ref 1	ity has been remove		honon frequency spe	cteristics:		- an acoustic mod	- two optic mode	range 70-100 meV	structures could	crystal structure	
ЛЕРЕ-3	1.001(0.000(1.000(0.000	H(CaH		1日しーーー日	Ι Ι			Tempeı		The pi	freque	(Grend	impur:		The pl	chara							

JEFF Meeting / 24 - 26 November 2004

Thermal neutron scattering cross section for H in CaH₂ (8)

8

In order to treat Hydrogen atom bound in CaH2, the acoustic mode	8 1451	27
has been weighted relative to the optical modes by a factor 1/106	8 1451	28
(see Ref.4).	8 1451	29
This weighting factor was not deduced from rigorous lattice	8 1451	30
dynamic model, but from physical grounds. This aspect could be	8 1451	31
improved and further investigations are needed on the matter.	8 1451	32
	8 1451	33
The S(alpha,beta) scattering laws have been generated using the	8 1451	34
tools and methodologies given in ref 5. The alpha and beta grids	8 1451	35
are the same as used for H in ZrH2 allowing energy transfers of	8 1451	36
almost 2 eV at T=296. K.	8 1451	37
	8 1451	38
The following ENDF MAT and MT's have been chosen in order to	8 1451	39
remain compatible with other materials: MAT 8, MT 237 and 238 for	8 1451	40
incoherent inelastic and elastic cross sections.	8 1451	41
	8 1451	42
The following options have been used in the processing:	8 1451	43
	8 1451	44
Leapr: spr 20.478, npr 1, iel 0	8 1451	45
Thermr: icoh 0, natom 1, mtref 237	8 1451	46
Acer: mti 237, mte 238, ielas 1 (incoherent elastic), nmix 1	8 1451	47

JEFF Meeting / 24 - 26 November 2004

Thermal neutron scattering cross section for Ca in CaH_2 (1)

Phonon frequency spectrum used for Ca in CaH₂;

Ĺ

JEFF Meeting / 24 - 26 November 2004

	È	hermal neutro	on scattering cross section for Ca in CaH_2 (2)
	NJ (per	OY Calculati rformed for T=	ons : MAT=59 (Ca – CaH ₂) 296; 400; 500; 600; 700; 800; 1000 and 1200 K)
8		LEAPR	 Generates the thermal scattering data in ENDF format: File7 MT=2 (elastic): Debye Waller factor given MT4 (inelastic): tabulated S(α,β)
	NJOY 99.81 Cad	THERMR	 Calculates the pointwise thermal scattering cross sections in pendf format, File3: mT=2 : elastic Ca-40 MT=239: incoherent elastic Ca in CaH₂ MT=240: incoherent inelastic Ca in CaH₂
		ACER	Generates the thermal scattering data for MCNP code in ACE format
JEFF N	<i>Aeetin</i>	g / 24 - 26 November	2004 22

Results (example T=296K)

JEFF Meeting / 24 - 26 November 2004

Thermal neutron scattering cross section for Ca in CaH_2 (4)

The ENDF file for Ca in CaH₂ is ready for JEFF3.1:

R

0	Ч	7	m	4	IJ	9	7	8	Q	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	С С
0	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451	1451
	С 0	л О	С О	л О	50	С 0	0 0	0 0	50	л О	5 0	5 0	5 0	ы С	л О	50	5 0	5 0	5 0	50	5 0	л О	С О	5 0	о С
	0	9	9	ς.	le						0. K.		12 phonon	OL	ОН) 2			ng				the energy	: mode, fine	the known	
	0	0	12	61	EA Cadarach						. 1000. 120		lents of Cal	I flux react	l of the Ca(the followi			ind 20 meV.	ectively ir	each optic	lained fror	
Release October 2004	0	0	0	U 0 0.SEROT C		59	АТА			0. 700. 800		on measuren	ne ILL high putributior	tained has	red at aro			ntered resp	ntered resk 140 meV. Ir	ved and exp	vea ana ex] (ref 2,3)				
	- 1	0	0	0	EVAL-OCT04	DIST-OCT04	MATERIAL	CATTERING D			00. 500. 60		n is based	formed at t	f 1). The c	oved.		spectrum ob			mode, cente	de bands ce	leV and 110-	ld be obser	ure of CaH2
le header.	3.973190+1	0.000000+0	0.000000+0	0.000000+0			VI	L NEUTRON S	6 FORMAT		es = 296.4		t evaluatio	spectra per	France) (re	as been rem		frequency	stics:		n acoustic	wo optic mo	ge 70-100 m	uctures cou	stal struct
JEFF-3.0 fi	2.000000+3	0.000000+0	1.000000+0	0.000000+0	Ca (CaH2)		ENDF/B-'	THERMA	ENDF-		Temperatur		The presen	frequency	(Grenoble/j	impurity h		The phonon	characteri		- a	- t	ran	stri	GLV

JEFF Meeting / 24 - 26 November 2004

24

26

Thermal neutron scattering cross section for Ca in CaH_2 (5)

8

In order to treat Calcium atom bound in CaH2, the acoustic mode	59	1451	27
has been weighted relative to the optical modes by a factor	59	1451	28
105/106 (see Ref.4).	59	1451	29
This weighting factor was not deduced from rigorous lattice	59	1451	30
dynamic model, but from physical grounds. This aspect could be	59	1451	31
improved and further investigations are needed on the matter.	59	1451	32
	59	1451	33
The S(alpha,beta) scattering laws have been generated using the	59	1451	34
tools and methodologies given in ref 5. The alpha and beta grids	59	1451	35
are the same as used for H in CaH2 allowing energy transfers of	59	1451	36
almost 2 eV at T=296. K.	59	1451	37
	59	1451	38
The following ENDF MAT and MT's have been chosen in order to	59	1451	39
remain compatible with other materials: MAT 59, MT 239 and 240	59	1451	40
for incoherent inelastic and elastic cross sections.	59	1451	41
	59	1451	42
The following options have been used in the processing:	59	1451	43
	59	1451	44
Leapr: spr 3.0193, npr 1, iel 0	59	1451	45
Thermr: icoh 0, natom 1, mtref 239	59	1451	46
Acer: mti 239, mte 240, ielas 1 (incoherent elastic), nmix 1	59	1451	47

JEFF Meeting / 24 - 26 November 2004

CaH ₂ moderator material has been used) as well as from ECKLA-H experiment (near future)

References	 P. Morris et al., Journal of Alloys and Compounds 363 (2004) 85-89 A.J. Maeland, J. Chem. Phys. 52 (1970) 3952-3956 	[3] J. Bergsma, J.A. Goedkoop, IAEA Symposium on inelastic Scattering of neutrons in solids and liquids, Vienna, October 1960	[5] A. F. Andresen et al., Journal of Solid State Chemistry, 20 (1977) 93-101 [6] D. K. Ross et al., Z.Phys Chem, 114 (1979) 221-230	[7] R E MacFarlane, NJOY suite of manuals, 'New Thermal Neutron Scattering Files for ENDF/B-VI release 2', August 1994.	[8] E.L. Slaggie, J. Phys. Chem. Solids, vol. 29 (1968) 923-934[9] D. Picton, PhD thesis, University of Birmingham, 1981	[10] A.I. Hawari et al., 'Physor 2004', Chicago (USA), April 2004[11] I.I. Al-Qasir et al., 'Physor 2004', Chicago (USA), April 2004		
		8						