DE LA RECHERCHE À L'INDUSTRIE

ceaden

Application of EGPT in the analysis of small-sample reactivity worth experiments

DEN/CAD/DER/SPRC/LEPh | Pierre Leconte. DEN/CAD/DER/SPRC | Alain Santamarina DEN/CAD/DER/SPEx | Patrick Blaise, Paul Ros

16/05/2017, OECD/NEA, WPEC/SG39.

OUTLINE

- Introduction
- Selected experiments
- Analysis methodology
- Application to ¹⁰³Rh capture
- Conclusions and perspectives

Ceaden introduction

Specificities of *small-sample reactivity worth* (SSRW) experiments with respect to other kinds of RW experiments (void coefficient, doppler, absorber efficiency...)

Small in terms of geometrical size (∅ ≈ 1cm. L ≈ 10cm)
Low sensitivity to flux gradiants

Small in terms of reactivity worth (1-10 pcm)
 No influence on the global production of neutrons in a critical assembly (<0.1%)

Limited number of isotopes / elements

 Under special spectral conditions, possibility to emphasis one type of reaction (capture, scattering)

⇒ In suitable conditions, SSRW can be related to limited number of parameters that make such experiments relevant for nuclear data improvement

Computing SSRW can be a tricky issue

$$\Delta \rho = \frac{k_2 - k_1}{k_2 k_1}$$

 \Rightarrow The more k_1 is close to k_2 , the higher convergence criteria must be required

Moreover, SSRW is often the first step before computing sensitivity coefficients for nuclear data analysis / feedback

$$S(\Delta \rho) = \frac{1}{\Delta \rho} \left(\frac{\delta \rho_2}{\frac{\delta \sigma_i}{\sigma_i}} - \frac{\delta \rho_1}{\frac{\delta \sigma_i}{\sigma_i}} \right) = \frac{S(\rho_2) - S(\rho_1)}{\Delta \rho}$$

 \Rightarrow In addition to the computation limits of $\Delta \rho$ in case of small RW, sensitivities to reactivities ρ can be several orders of magnitude higher than $\Delta \rho$

➡ Potential issues of « zero / zero »

Various methods for calculating SSRW experiments

Methods for SSRW calculation	Deterministic code	Probabilistic code
Eigen-value difference (EV)	 + Easy to implement/use - Model simplifications (energy, geometry, leakage model) - Numerical convergence issues 	+ Exact method - Huge computation time
Standard perturbation theory (SPT)	 + (Almost) no convergence issues (Δφ ⇔ Δσ) - Not implemented in every code (sometimes, only 1st order SPT) 	 + Best method in case of exact SPT Mostly 1st order SPT Convergence issues with scattering effects

⇒ Recent implementation of IFP-based perturbation methods in Monte-Carlo codes (TRIPOLI, SERPENT, MCNP...) is a huge improvement for an accurate calculation of SSRW

DE LA RECHERCHE À L'INDUSTRIE

Ceaden introduction

What about the sensitivity analysis of SSRW?

Methods for sensitivity analysis of SSRW	Deterministic code	Probabilistic code
Equivalent Generalized Perturbation Theory (EGPT)	 + All sensitivity vectors available in a single calculation - Numerical convergence issues linked to the computation of Δρ and ΔS(ρ) 	- Convergence issues due to the difference of two sensitivity computations
Direct Perturbation (DP)	 + Easy to implement/use + Can be applied at several stages (ENDF files. micro-lib. macro-lib) - Required home-made scripts to perturbate the data 	 Convergence issues No available methods for doing « perturbations of perturbations »

⇒ Reliability of the EGPT method in the analysis of SSRW experiments?
 See P. Ros et al., « A revision of sensitivity analysis for small reactivity effects in ZPRs",
 Proc. Of ICAPP, avril 2017 conference, Kyoto, Japan

OUTLINE

- Introduction
- Selected experiments
- Analysis methodology
- Application to ¹⁰³Rh capture
- Conclusions and perspectives

SELECTED EXPERIMENTS The Minerve Reactor (CEA Cadarache)

MINERVE Characteristics

- Pool-type reactor (100W max)
- Light Water at ambiant temperature
- Reflector: large graphite blocks
- Driver zone: MTR elements (UAI plates, >90% ²³⁵U)
- Test zone: thermal or fast spectrum configurations

SELECTED EXPERIMENTS The MAESTRO experiment (2012-2016)

Validation of nuclear on a large range of materials used in GEN-II/GEN-III reactor cores

More than 60 samples :

- Moderating materials:
- Structural materials:

Detection materials:Absorbing materials:

Industrial alloys:Calibration materials

H₂O, ^{nat}Be, ^{nat}C, CH₂ ^{nat}Mg, ^{nat}Al, ^{nat}Cl, ^{nat}Ca, ^{nat}Ti, ^{nat}Cr, ^{nat}Fe, ^{nat}Ni, ^{nat}Cu, ^{nat}Zn, ^{nat}Zr, ^{nat}Mo, ^{nat}Sn ^{nat}V, ^{nat}Mn, ^{nat}Co, ^{nat}Nb, ^{nat}Rh ^{nat}Ag, ^{nat}In, ^{nat}Cd ^{nat}Eu, ^{nat}Gd, ^{nat}Dy, ^{nat}Er, ^{nat}Hf ¹⁵³Eu, ¹⁰⁷Ag, ^{nat}Cs Zy4, M5, SS304, SS316, Inconel-800 ^{nat}Au, ⁶Li, ¹⁰B

10-30cm long tubes filled with materials of different physical forms

- Pure rods
- Liquid solutions
- Powder mixed with Al₂O₃ diluant

Ceaden The MAESTRO experiment (2012-2016)

The MAESTRO core configuration

Ceaden The ERMINE-V experiment (1974-1979)

Validation of the integral capture of fission products in SCFR in support to SUPER-PHENIX

SELECTED EXPERIMENTS The ERMINE-V experiment (1974-1979)

e'12,7mm

12,7mm

The ERMINE-5 experiment (1974-1979)

OUTLINE

- Introduction
- Selected experiments
- Analysis methodology
- Application to ¹⁰³Rh capture
- Conclusions and perspectives

Ceaden analysis methodology

TRIPOLI-4 modeling

MAESTRO core

ERMINE-V / ZONA 1 core

Exact SPT method in TRIPOLI-4

- Continuous energy forward flux calculation + collision locus storage
- Continuous energy adjoint flux calculation for each stored collision
- Computation of the reactivity worth with various collapsing options
- \Rightarrow 10³ 10⁴ h.CPU per sample

Computation of sensitivity coefficents to SSRW

Computation of sensitivities with deterministic methods

Ceaden analysis methodology

EGPT method vs Direct Perturbation method

DP method

- 1 nominal RW calculation
- I RW calculation with modified XS

EGPT method

- 1 sensitivity calculation (fine mesh = 281G) for the unperturbed reactivity $S(\rho_1)$
- 1 sensitivity calculation (fine mesh = 281G) for the perturbed reactivity $S(\rho_2)$
- Computation of sensitivity coefficients by $S(\Delta \rho)=(S(\rho_2)-S(\rho_1))/\Delta \rho$ in MATLAB
- Collapsing on various possible meshes (15, 26, 33...)

Application on $\Delta \rho_{Rh}$ in the MAESTRO experiment

Sensitivity	1-group sensitivity coefficient (%/%)						
method	Rh capture	²³⁵ U Nu_tot	¹ H elastic scat.				
EGPT	0.918	-0.855	-0.738				
DP	0.930	-0.870	-0.834				

⇒ The EGPT is consistent with the direct perturbation method

OUTLINE

- Introduction
- Selected experiments
- Analysis methodology
- Application to ¹⁰³Rh capture
- Conclusions and perspectives

Calculation / Experiment comparison

Experiment	C/E-1 TRIPOLI-4DEV + JEFF-3.2
MAESTRO	1.4% ± 1.4%
ERMINE-V/ZONA1	-5.5 ± 1.5%
ERMINE-V/ZONA3	0.2 ± 1.5%

ERMINE-V ⇒ only measurement uncert + MC convergence

In the current analysis, an arbitrary 3% uncertainty will be added to account for technological uncertainty (fuel composition, density, dimensions...)

EGPT on ¹⁰³Rh RW – MAESTRO experiment

	CAPT	FISS	EL+INEL	NU	SUM			
Rh103	0.902		-0.001		0.901			
H1	0.014		-0.738		-0.724			
016	0.003		-0.010		-0.007			
Al27	-0.031		0.005		-0.026			
U235	0.067	-0.532	~0	-0.818	-1.283			
U238	0.172	-0.104	-0.002	-0.127	-0.061			

Sensitivity coefficients (%/%) on Λ_0

⇒ Large indirect effects due nuclear data influencing either:

- the number of neutrons at thermal energy: ${}^{1}H(n,el)$, ${}^{235}U(n,f)$, ${}^{238}U(n,\gamma)$
- the integral fission rate over the reactor core: $^{235,238}U(v)$, $^{235,238}U(n,f)$

EGPT on ¹⁰³Rh RW : not the relevant indicator

In most cases, reactivity worth are normalized to reference samples to cancel many sources of ucnertainties on the evaluation of the fission integral:

- Nuclear data
- Core technological uncertainties (fuel enrichment, impurities, clad dimensions, lattice pitch...)

So the EGPT should not be applied on single RW but on ratio of RW

A RECHERCHE À L'INDUSTRIE Ceaden Application to 103 RH CAPTURE

EGPT on individual RW – MAESTRO experiment

Sensitivity coefficients (%/%) on $\Delta \rho_{Rh}$								
	CAPT	FISS	EL+INEL	NU	SUM			
Rh103	0.902		-0.001		0.901			
H1	0.014		-0.738		-0.724			
016	0.003		-0.010		-0.007			
Al27	-0.031		0.005		-0.026			
U235	0.067	-0.532	~0	-0.818	-1.283			
U238	0.172	-0.104	-0.002	-0.127	-0.061			

Sensitivity coefficients (%/%) on $\Delta \rho_{Li6}$

	CAPT	FISS	EL+INEL	NU	SUM
Li6	0.892				0.892
H1	0.049		-0.460		-0.411
016	0.003		-0.011		-0.008
Al27	-0.052		0.003		-0.049
U235	0.050	-0.718	~0	-0.858	-1.526
U238	0.192	-0.112	-0.003	-0.138	-0.061

EGPT on ratio of RW – MAESTRO experiment

Sensitivity coefficients (%/%) on $\Delta \rho_{Rh} / \Delta \rho_{Li6}$								
	CAPT	FISS	EL+INEL	NU	SUM			
Rh103	0.902				0.902			
Li6	-0.892				-0.892			
H1	-0.035		-0.278		-0.313			
016	0.003		-0.011		-0.008			
Al27	-0.052		0.003		-0.049			
U235	0.017	-0.186	~0	-0.040	0.243			
U238	-0.020	-0.008	~0	-0.011	0.000			

EGPT on individual RW – ERMINE-V/ZONA3 experiment

Sensitivity coefficients (%/%) on $\Delta\rho_{\text{Rh}}$

Sensitivity coefficients (%/%) on $\Delta\rho_{\text{U235}}$

	CAPT	FISS	EL	INEL	NU	SUM		CAPT	FISS	EL	INEL	NU	SUM
U235	-0.006	0.023	0.000	0.000	0.040	0.057	U235	-0.168	1.193	0.000	-0.019	1.798	2.804
U238	-0.408	0.127	0.069	-0.013	0.205	-0.018	U238	-0.236	0.184	0.063	-0.039	0.292	0.266
Pu239	-0.099	0.533	0.007	0.000	0.827	1.268	Pu239	-0.032	0.369	0.006	-0.001	0.597	0.940
Pu240	-0.031	0.034	0.002	0.000	0.050	0.056	Pu240	-0.011	0.045	0.002	0.000	0.066	0.101
Pu241	-0.010	0.092	0.001	0.000	0.143	0.225	Pu241	-0.005	0.043	0.001	0.000	0.075	0.113
016	-0.005		0.143	-0.001		0.138	016	-0.006		0.123	-0.001		0.116
Na23	-0.004		0.081	-0.001		0.075	Na23	-0.002		0.072	-0.005		0.064
Rh103	0.874		0.010	0.110		0.995	Rh103	0.000		0.000	0.000		0.000

EGPT on ratio of RW – ERMINE-V/ZONA3 experiment

Sensitivity coefficients (%/%) on $\Delta \rho_{\text{Rh}}$ / $\Delta \rho_{\text{U235}}$

	CAPT	FISS	EL	INEL	NU	SUM
U235	0.163	-1.171	0.000	0.019	-1.759	-2.747
U238	-0.172	-0.057	0.007	0.026	-0.088	-0.284
Pu239	-0.067	0.164	0.001	0.001	0.230	0.328
Pu240	-0.020	-0.011	0.000	0.000	-0.015	-0.045
Pu241	-0.006	0.049	0.000	0.000	0.068	0.111
016	0.002		0.020	0.000		0.022
Na23	-0.002		0.009	0.004		0.011
Rh103	0.874		0.010	0.110		0.995

Sensitivity profile

Rh103 capture

Prior nuclear data covariances

COMAC_V2 set

Isotopo	Origin of covariance files								
isotope	Cross sections	Multiplicity	Thermal PFNS	Fast PFNS					
U235	ENDF/B-VII.1	JENDL-4.0-up1	CEA	ENDF/B-VII.1					
U238	CEA	JENDL-4.0-up1		JENDL-4.0-up1					
Pu239	CEA	JENDL-4.0-up1	CEA	JENDL-4.0-up1					
Pu240	CEA	JENDL-4.0-up1		JENDL-4.0-up1					
Pu241	ENDF/B-VII.1	JENDL-4.0		JENDL-4.0					
H1	ENDF/B-VII.1								
Li6	JEFF-3.2								
O16	JENDL-4.0								
Na23	CEA = JEFF32								
Zr90	ENDF/B-VII.1								
Zr91	ENDF/B-VII.1								
Rh103	ENDF/B-VII.1								

Result of the adjustment procedure MAESTRO experiment

Rh103 capture

Result of the adjustment procedure MAESTRO + ERMINE-V/ZONA3 experiment

OUTLINE

- Introduction
- Selected experiments
- Analysis methodology
- Application to ¹⁰³Rh capture
- Conclusions and perspectives

Ceaden conclusions and perspectives

Key-points

- Computing EGPT for SSRW experiments must account for the RW normalisation
- Using a reference sample of similar behavior minimizes the influence of indirect terms in the analysis of SSRW
- Combining independant thermal and fast spectrum experiments was applied for a significant uncertainty reduction on the ¹⁰³Rh capture cross section
 - 1eV 10 keV
 5% ⇒ 3%
 10 keV 1MeV
 8% ⇒ 5%

Perspectives

- **Finalisation of S/U analysis for ERMINE-V experiments**
- Computation of ERANOS sensitivities for RRR/SEG experiments
- Consistent assimilation of MINERVE/MAESTRO + RRR/SEG experiments for the list of common isotopes: *Mo-95, Mo-98, Mo-100, Rh-103, Cs-133, Ag-109, Sm-149, Eu-153, Nb, Co, Cd, Fe, Ni, Mo, Mn, Au, Cu, Zr, C*

Ceaden conclusions and perspectives

Open question to investigate

- In the case of experimental results reported as infinite diluted reactivity worth (e.g. RRR/SEG), which mass to consider to apply the EGPT? Is the balance between indirect and direct contributions sensitive to the magnitude of the RW? Limit range for linear assumption?
 - Large masses:

Small masses:

- + no convergence issues
 - increase of self-shielding effects
- + closer to the real experiment
 - convergence issues

⇒ Test of increasing concentrations for the sample mass

In fast spectrum experiments, are the EGPT profiles influenced by the size of the geometrical model?

➡ Test of various model sizes

Can Monte-Carlo methods replace deterministic ones for SSRW sensitivities? Minimum acceptable RW value?

⇒ EGPT benchmark to be done between various deterministic (APOLLO2, ERANOS) and Monte-Carlo (SERPENT, TRIPOLI, MCNP) codes

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)4 42 25 48 94 | F. +33 (0)4 42 25 70 09 Direction DEN Département DER Service SPRC

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019