SG39 Meeting May 16-17, 2017

Update on Continuous Energy Cross Section Adjustment.

UC Berkeley / INL collaboration

Outline

- Presentation of the proposed methodology (you've already seen this)
- Results from ²³⁹Pu adjustment from Jezebel integral experiment:
 - *k*_{eff}
 F28/F25
 - F37/F25
 - F49/F25
- Comparison against ERANOS
- Conclusions

Projection vs. discretization Continuous energy cross section adjustment

Continuous-energy first order uncertainty propagation

$$Var\left[R\right] = \int_{E_{min}}^{E_{max}} \int_{E_{min}}^{E_{max}} S_{\Sigma}^{R}\left(E\right) \cdot COV\left[\Sigma(E), \Sigma(E')\right] \cdot S_{\Sigma}^{R}\left(E'\right) \, dE \, dE'$$
(1)

 $COV [\Sigma(E), \Sigma(E')]$ is the continuous-energy covariance matrix $S_{\Sigma}^{R}(E)$ is the sensitivity density function for the generic response RMulti-group discretization is usually introduced here

Projection vs. discretization Continuous energy cross section adjustment

Multi-group discretization of the covariance matrix

Figure: Comparison between the multi-group (left) and continuous (right) ²³⁹Pu capture cross correlation matrices adopted in the adjustment process.

Multi-group discretization of the covariance matrix

²³⁹Pu capture uncert.: "continuous-energy" vs multi-group

Figure: Comparison between ²³⁹Pu capture cross section relative uncertainty adopted as input by the "continuous" and multi-group approaches.

Projection vs. discretization Continuous energy cross section adjustment

Eigendecomposition of the covariance matrix

$$COV [\Sigma(E), \Sigma(E')] = \sum_{j=1}^{\infty} U_j(E) \cdot V_j \cdot U_j(E') \quad (2)$$

 V_j are the eigenvalues of the continuous energy covariance matrix corresponding to the eigenfunctions $U_j(E)$

Projection vs. discretization Continuous energy cross section adjustment

Continuous-energy uncertainty propagation (revisited)

$$Var[R] = \int_{E_{min}}^{E_{max}} \int_{E_{min}}^{E_{max}} S_{\Sigma}^{R}(E) \cdot COV[\Sigma(E), \Sigma(E')] \cdot S_{\Sigma}^{R}(E') \ dE \ dE'$$

(1)

$$Var[R] = \sum_{j=1}^{\infty} V_j \cdot \left(\int_{E_{min}}^{E_{max}} U_j(E) \cdot S_{\Sigma}^R(E) \ dE \right)^2 (3)$$
Berkeley

Manuele Aufiero – UC Berkeley Continuous Energy Cross Section Adjustment

Projection vs. discretization Continuous energy cross section adjustment

Continuous-energy sensitivities

Main step: calculation of integral of continuous energy sensitivity functions via Monte Carlo XGPT:

$$S_{U_{j}}^{R}=\int U_{j}\left(E
ight) S_{\Sigma}^{R}\left(E
ight) dE$$

Projection vs. discretization Continuous energy cross section adjustment

Continuous-energy uncertainty propagation (truncated)

$Var\left[R\right] = \sum_{j=1}^{\infty} V_j \cdot \left(S_{U_j}^R\right)^2 \simeq \sum_{j=1}^n V_j \cdot \left(S_{U_j}^R\right)^2 \quad (4)$

Projection vs. discretization Continuous energy cross section adjustment

Projection vs. discretization

Figure: Eigenfunctions contribution to the total variances in Jezebel. Response functions: k_{eff} , F28/F25, F37/F25, F49/F25. (²³⁹Pu ENDF/B-VII covariances).

Manuele Aufiero – UC Berkeley Continuous Energy Cross Section Adjustment

Projection vs. discretization Continuous energy cross section adjustment

Projection vs. discretization

- Eigenvalue decomposition lead to exponential convergence with respect to the number of the basis functions
- Multi-group discretization lead to slow, unpredictable convergence with respect to the number of groups
- Statistical efficiency of Monte Carlo continuous sensitivity estimators doesn't depend on the number of eigenfunctions
- Statistical efficiency of Monte Carlo multi-group sensitivity estimators degrades quickly when adopting finer energy grids

Projection vs. discretization Continuous energy cross section adjustment

Example of basis functions from ²³⁹Pu ENDF/B-VII

Manuele Aufiero – UC Berkeley Continuous Energy Cross Section Adjustment

Projection vs. discretization Continuous energy cross section adjustment

Example of basis functions from ²³⁹Pu ENDF/B-VII

SVD of $^{239}\mathrm{Pu}$ covariance matrix - Top contributors to $\mathbf{k}_{\mathrm{eff}}$ uncertainty

Basis #3 for key uncert. - 9.4% of the total variance - 216 pcm (rel. std)

Projection vs. discretization Continuous energy cross section adjustment

Example of basis functions from ²³⁹Pu ENDF/B-VII

Projection vs. discretization Continuous energy cross section adjustment

Multi-group/GPT starting point

Multi-group sensitivity coefficients:

$$\boldsymbol{S_{\Sigma}^{R}} = \left(S_{\Sigma_{1}}^{R}, S_{\Sigma_{2}}^{R} \cdots S_{\Sigma_{N}}^{R}\right)$$
(5)

Prior multi-group covariance matrices:

$$\boldsymbol{COV} \left[\boldsymbol{\Sigma}, \boldsymbol{\Sigma}\right] = \begin{bmatrix} Var(\Sigma_{1}) & COV\left[\Sigma_{1}, \Sigma_{2}\right] & \cdots & COV\left[\Sigma_{1}, \Sigma_{N}\right] \\ COV\left[\Sigma_{2}, \Sigma_{1}\right] & Var(\Sigma_{2}) & \cdots & COV\left[\Sigma_{2}, \Sigma_{N}\right] \\ \vdots & \vdots & \ddots & \vdots \\ COV\left[\Sigma_{N}1, \Sigma_{1}\right] & COV\left[\Sigma_{N}, \Sigma_{1}\right] & \cdots & Var(\Sigma_{N}) \end{bmatrix}$$
(6)

Projection vs. discretization Continuous energy cross section adjustment

Continuous-energy/XGPT starting point

Eigenfunctions sensitivities:

$$\mathbf{S}_{\mathbf{U}}^{\mathbf{R}} = \left(S_{U_1}^{R}, S_{U_2}^{R} \cdots S_{U_n}^{R}\right)$$
(7)

Projection of the (prior) covariance matrices:

Introduction

$$\mathbf{COV}\left[\mathbf{U},\mathbf{U}\right] = \begin{bmatrix} V_1 & 0 & \cdots & 0 \\ 0 & V_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & V_n \end{bmatrix}$$
(8)
Berkeley

Manuele Aufiero – UC Berkeley Continuous Energy Cross Section Adjustment

Projection vs. discretization Continuous energy cross section adjustment

Continuous energy cross section adjustment

Introduction

That's it! S_{Σ}^{R} and $COV[\Sigma, \Sigma]$ are replaced by S_{U}^{R} and COV[U, U]

The continuous-energy adjustment process follows the standard, legacy multi-group approach...

Continuous energy cross section adjustment

Adjustment parameters
$$oldsymbol{\Delta}_{oldsymbol{U}} = \left[\Delta_{U_1}, \Delta_{U_2} \cdots \Delta_{U_n}
ight]^T$$
 .

$$\boldsymbol{\Delta}_{\boldsymbol{U}} = \boldsymbol{\mathsf{M}} \, \boldsymbol{\mathsf{G}}^{\mathcal{T}} \left[\boldsymbol{\mathsf{G}} \, \boldsymbol{\mathsf{M}} \, \boldsymbol{\mathsf{G}}^{\mathcal{T}} + \boldsymbol{\mathsf{V}}_{\boldsymbol{\mathsf{e}}} + \boldsymbol{\mathsf{V}}_{\boldsymbol{\mathsf{m}}} \right]^{-1} \, \boldsymbol{\mathsf{D}}_{\boldsymbol{\mathsf{R}}} \quad (9)$$

- M is the prior covariance of the continuous functions *prior* COV [U, U]
- $\bullet~V_e$ and $V_m\colon$ matrices of the experimental and modeling errors
- D_R contains the relative differences between the calculated and measured experiments.
- **G** is the matrix of the sensitivities: $\mathbf{G} = \begin{bmatrix} \mathbf{S}_{U}^{\mathbf{R}_{1}} \mathbf{S}_{U}^{\mathbf{R}_{2}} \cdots \mathbf{S}_{U}^{\mathbf{R}_{N}} \end{bmatrix}^{T}$

Projection vs. discretization Continuous energy cross section adjustment

Continuous energy cross section adjustment

$$\boldsymbol{\Delta}_{\boldsymbol{U}} = \boldsymbol{\mathsf{M}} \, \boldsymbol{\mathsf{G}}^{\mathcal{T}} \left[\boldsymbol{\mathsf{G}} \, \boldsymbol{\mathsf{M}} \, \boldsymbol{\mathsf{G}}^{\mathcal{T}} + \boldsymbol{\mathsf{V}}_{\boldsymbol{\mathsf{e}}} + \boldsymbol{\mathsf{V}}_{\boldsymbol{\mathsf{m}}} \right]^{-1} \, \boldsymbol{\mathsf{D}}_{\boldsymbol{\mathsf{R}}} \quad (9)$$

$$^{adjusted}\Sigma(E) \simeq {}^{prior}\Sigma(E) \cdot \left(1 + \sum_{j=1}^{n} \Delta_{U_j} \cdot U_j(E)\right)$$
(10)
Berkeley

Manuele Aufiero – UC Berkeley Continuous Energy Cross Section Adjustment

Adjusted continuous energy covariance

 adjusted COV [U , U] via the Generalized Least Squares Method is obtained as:

Introduction

 adjusted COV [U , U] contains the correlations among the basis functions introduced by the experiments.

$$\simeq \begin{bmatrix} U_1(E) & \dots & U_n(E) \end{bmatrix}^{adjusted} \text{COV} \begin{bmatrix} \Sigma(E) & , \Sigma(E') \end{bmatrix} \simeq$$

$$\simeq \begin{bmatrix} U_1(E) & \dots & U_n(E) \end{bmatrix}^{adjusted} \text{COV} \begin{bmatrix} U & , U \end{bmatrix} \begin{bmatrix} U_1(E') \\ \vdots \\ U_n(E') \end{bmatrix} \text{Berkeley}$$
(12)

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Case study: Jezebel ²³⁹Pu

Relative experimental uncertainties

$k_{ m eff}$	F28/F25	F37/F25	F49/F25
0.002	0.011	0.014	0.009

Experimental correlation matrix

	$k_{ m eff}$	F28/F25	F37/F25	F49/F25
$k_{ m eff}$	1.00	0.00	0.00	0.00
F28/F25	0.00	1.00	0.32	0.23
F37/F25	0.00	0.32	1.00	0.23
F49/F25	0.00	0.23	0.23	1.00

Table: Experimental uncertainties and correlation matrix for the four considered response functions.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Case study: Jezebel ²³⁹Pu

Relative modeling uncertainties				
k _{eff} F28/F25 F37/F25 F49/F				
0.0018	0.0090	0.0030	0.0030	

Modeling correlation matrix

		-		
	$k_{ m eff}$	F28/F25	F37/F25	F49/F25
$k_{ m eff}$	1.00	0.00	0.00	0.00
F28/F25	0.00	1.00	0.50	0.50
F37/F25	0.00	0.50	1.00	0.50
F49/F25	0.00	0.50	0.50	1.00

Table: Modeling uncertainties and correlation matrix for the four considered response functions.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Case study: Jezebel ²³⁹Pu

	Exp.	Calc.	Calc.
		(this work)	(WPEC-SG33)
$k_{ m eff}$	1.0000	0.99976	0.99986
F28/F25	0.2133	0.20871	0.20839
F37/F25	0.9835	0.97155	0.97071
F49/F25	1.4609	1.42435	1.42482

Table: Experimental and calculated values.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Continuous vs. multi-group: uncertainty reduction

	Prior rel. uncert. (%)		Post rel. uncert. (%)	
	multi-group	XGPT	multi-group	XGPT
$k_{ m eff}$	0.733	0.704	0.191	0.190
F28/F25	3.731	3.581	1.298	1.291
F37/F25	3.631	3.573	1.307	1.306
F49/F25	0.825	0.797	0.558	0.547

Table: Comparison of prior (input) and post (adjusted) nuclear data uncertainties estimated by the multi-group and continuous approaches for the four response functions.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Continuous vs. multi-group: uncertainty reduction

Figure: ²³⁹Pu elastic scattering uncertainty before and after the adjustment process. Multi-group (left) and continuous energy (right) results.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Continuous vs. multi-group: uncertainty reduction

Figure: ²³⁹Pu inelastic scattering uncertainty before and after the adjustment process. Multi-group (left) and continuous energy (right) results.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Negative correlations

Figure: ²³⁹Pu inelastic scattering correlation matrix in the 1 keV – 20 MeV energy region. Before (left) and after (center) the continuous energy adjustment process, and Prior – Post difference is shown on the right.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Continuous vs. multi-group: XS adjustment

Figure: ²³⁹Pu elastic scattering cross section before and after the adjustment process. Multi-group (red) and continuous energy (black) results.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Continuous vs. multi-group: XS adjustment

Figure: ²³⁹Pu inelastic scattering cross section before and after the adjustment process. Multi-group (red) and continuous energy (black) results.

Case study: Jezebel ²³⁹Pu Comparison against multi-group/GPT Conclusion and future works

Continuous vs. multi-group: Post C/E

	Prior C	/E	Post C/E	
	multi-group ¹ XGPT		multi-group	XGPT
$k_{ m eff}$	0.99986	0.99976	1.00001	1.00000
F28/F25	0.977	0.979	0.995	0.995
F37/F25	0.987	0.988	0.996	0.996
F49/F25	0.975	0.975	0.985	0.984

Table: Comparison of prior and post C/E estimated by the multi-group and continuous approaches for the four response functions.

Conclusions

Main goal: new methodology for continous-energy XS adjustment Shorten the distance between evaluators and Monte Carlo users (?) Enable the adoption of integral experiments in a simple, effective and timely way (³⁵Cl (n, p), ²³³U (n, γ) ...)

Conclusions

Main goal: new methodology for continous-energy XS adjustment Shorten the distance between evaluators and Monte Carlo users (?) Enable the adoption of integral experiments in a simple, effective and timely way (³⁵Cl (n, p), ²³³U (n, γ) ...)

First tests are promising... we need to move to broader case studies. Anyone wants to help/contribute???

In the resonance region, resonance parameters XS sensitivities (after MF-32 decompositions) and scattering radii are the basis functions for the continuous adjustment

Lessons learned (random thoughts) and ongoing works

- Please, leave MF-32 in the ENDF files
- In the future, storing MF-33 in the form of eigenvectors/eigenvalues might save, memory, CPU, and headaches
- Now working on secondaries distribution adjustment... Legendre or double differential?
- Next step: URR adjustment (this might take some time!)

Questions? Suggestions? Ideas?