PAUL SCHERRER INSTITUT

Sandro Pelloni :: Senior Scientist :: Paul Scherrer Institut

Comparison of PIA sequences by using the UR ²³⁸U capture cross-section as a standard

May 16-17, 2017: WPEC/SG-39

• Data assimilation: 4 configurations + 14 integral experiments.

- 10 nuclides considered in adjustment:
 ¹⁶O, ²³Na, ⁵²Cr, ⁵⁶Fe, ⁵⁸Ni, ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu.
- 33 group JEFF-3.1 a priori cross-sections (ECCO: ERANOS-2.2-N)

+

33 group a priori COMMARA-2.0 based variance/covariance data. ²³⁸U capture cross-section in the unresolved resonance region: standard i.e. variance ≡ 0.

Asymptotic Progressive Incremental Adjustment

Configuration	Integral parameters to assimilate				
GODIVA	F28/F25, F49/F25, F37/F25				
JEZEBEL-Pu239	F28/F25, F49/F25, F37/F25	At core			
ZPR6-7	F28/F25, F49/F25, C28/F25	center			
ZPPR9	F28/F25, F49/F25, C28/F25,				
	Na Void -Step 3, -Step 5: coolant density effects				

 Sequence: GODIVA spectral indices → ZPPR9 coolant density effects → ZPPR9 spectral indices → ZPR6-7 spectral indices → JEZEBEL-Pu239 spectral indices.

☆Asymptotic PIA: k_{eff} needs to be excluded from the assimilation.

Asymptotic PIA methodology

Iterative procedure used in individual incremental steps:

For i = 0, 1, 2, ... i = 0: a priori, starting point:

$$\Delta T_{i} = M_{i}G_{i}^{T}\left(G_{i}M_{i}G_{i}^{T} + V_{E} + V_{M}\right)^{-1}CE_{i} , CE_{i} = \left(CE_{i,k}\right) = \left(\frac{R_{E,k} - (R_{c}(T_{i}))_{,k}}{(R_{c}(T_{i}))_{,k}}\right)$$
(1)

with

 $M_i = (M_{i,j,j'}) = cov(T_{i,j}, T_{i,j'})/(T_{i,j}T_{i,j'})$: nuclear data variance/covariance matrix in relative terms.

i = 0: M_0 : derived from COMMARA-2.0, this study.

$$M_{i+1} = (M_{i+1,j,j'}) = M_i - M_i G_i^T (G_i M_i G_i^T + V_E + V_M)^{-1} G_i M_i$$
 (2.1)

Will be discarded

$$M_{i+1} = (M_{i+1,j,j'}) = M_0 - M_0 G_i^T (G_i M_0 G_i^T + V_E + V_M)^{-1} G_i M_0$$
 (2.2)

Asymptotic PIA methodology (continued)

Additionally, Eq. (1):

$$\Delta T_{i} = \left(\Delta T_{i,j}\right) = \left(\frac{T_{i+1,j} - T_{i,j}}{T_{i,j}}\right) = \left(\frac{T_{i+1,j}}{T_{i,j}} - 1\right) = \left(F_{i,j} - 1\right) \implies$$

$$T_{i+1} = \left(T_{i+1,j}\right) = \left(T_{i,j}F_{i,j}\right), \qquad F_{i} = \left(F_{i,j}\right) = \left(1 + \Delta T_{i,j}\right) \qquad (3)$$

 $T_i = (T_{i,j})$: data set vector. Starting from JEFF-3.1, this study.

- $R_C(T_i) = ((R_C(T_i))_{,k})$: analytical values vector. Through ERANOS (2.2-N), this study. Asymptotic PIA: for integral parameters k dealt with in specific step.
- $F_i = (F_{i,j})$ $R_E = (R_{E,k})$

- : adjustment factor vector i.e. $T_{i+1,j} = (\prod_{m=0}^{i} F_{m,j})T_{0,j}$.
- : vector of the central values of the experimental integral parameters.

Asymptotic PIA methodology (continued)

$$G_i = \left(G_{i,k,j}\right) = \left(\frac{d\left(\left(R_c(T_i)\right)_{,k}\right)}{\left(R_c(T_i)\right)_{,k}} \middle/ \frac{dT_{i,j}}{T_{i,j}}\right)$$

: in the form of sensitivity coefficient vector by using appropriate indexing.

 $V_E = (V_{E,k,k'}) = cov(R_{E,k}, R_{E,k'}) / (R_{E,k}R_{E,k'}) : \text{experimental variance/covariance}$ matrix.

$$V_{M} = (V_{M,k,k'}) = cov \left((R_{c}(T))_{,k}, (R_{c}(T))_{,k'} \right) / \left((R_{c}(T))_{,k} (R_{c}(T))_{,k'} \right)$$

: analytical modeling matrix.

From iteration i to i + 1, two steps:

(1)
$$M_i, G_i, V_E, V_M, R_E, R_C(T_i) \xrightarrow{\text{Eq. 1}} \Delta T_i \xrightarrow{\text{Eq. 3}} F_i, T_{i+1}$$
 In house
 $M_i, G_i, V_E, V_M \xrightarrow{\text{Eq. 2}} M_{i+1}$ In house

(2) In house tool MICADJ ERANOS (2.2-N) $\Rightarrow R_C(T_{i+1}), G_{i+1};$ together with M_{i+1} : go to (1)

and replace i by i + 1.

(1), (2) until $F_n = 1 \rightarrow n$ iterations needed to converge. Practical reason: $0.99 < F_{n,j} < 1.01$, this study.

Results (C/Es)

Configuration	Integral	Experimental		PIA-Simulation		
	parameter	uncertainty	1	1ST	1STm	
		(%)	C/E			
	F28/F25	1.1	0.998	0.998	1.002	
GODIVA	F49/F25	1.0	1.001	1.001	1.004	
	F37/F25	1.4	0.996	0.995	0.997	
	k _{eff}	0.1	0.977	0.977	0.977	
	F28/F25	1.1	0.997	0.998	1.000	
JEZEBEL-Pu239	F49/F25	0.9	0.999	1.000	1.000	
	F37/F25	1.4	1.005	1.004	1.001	
	k _{eff}	0.2	0.995	0.996	0.997	
	F28/F25	3.0	1.020	1.019	1.011	
ZPR6-7	F49/F25	2.1	0.977	0.978	0.983	
	C28/F25	2.4	1.001	1.003	1.000	
	k _{eff}	0.2	1.007	1.006	1.001	
	F28/F25	2.7	0.951	0.948	0.931	
	F49/F25	2.0	0.997	0.997	1.001	
ZPPR9	C28/F25	1.9	0.994	0.995	0.994	
	Na Void Step 3	1.9	1.033	1.030	1.014	
	Na Void Step 5	1.9	0.975	0.973	0.955	
	k _{eff}	0.1	1.006	1.005	1.004	
JEZEBEL-Pu240	k _{eff}	0.2	0.999	1.000	1.001	
ZPR6-7_Pu240	k _{eff}	0.2	1.007	1.006	1.006	
JOYO	k _{eff}	0.2	0.993	0.993	0.993	
	F28/F25	1.1	0.981	0.982	0.995	
FLATTOP-Pu	F37/F25	1.4	1.004	1.005	1.010	
	k _{eff}	0.3	0.991	0.991	0.984	
	F28/F25	1.1	0.996	0.996	1.003	
FLATTOP-25	F49/F25	0.9	1.005	1.005	1.008	
	F37/F25	1.3	1.005	1.005	1.008	
	k _{eff}	0.1	0.972	0.972	0.967	
MIX-MET-FAST-001	k _{eff}	0.2	0.993	0.994	0.995	
PU-MET-FAST-010	k _{eff}	0.2	0.985	0.986	0.985	
PU-MET-FAST-009	k _{eff}	0.3	0.988	0.988	0.986	

- 1: Reference solution.
- **1ST**: similar to **1**, UR ²³⁸U capture cross-section: standard.
- **1STm**: similar to **1ST**, however:

 $M_{i+1} = (M_{i+1,j,j'}) = M_0 - M_0 G_i^T (G_i M_0 G_i^T + V_E + V_M)^{-1} G_i M_0$ instead of

$$M_{i+1} = (M_{i+1,j,j'}) = M_i - M_i G_i^T (G_i M_i G_i^T + V_E + V_M)^{-1} G_i M_i$$

- 1-1ST: C/Es similar: The COMMARA-2.0 uncertainty of the UR ²³⁸U capture crosssection is only ~1-3%.
- ✤ 1ST-1STm: also comparable.

Results (nuclear data caused uncertainties)

Configuration	Integral	Experimental	PIA-Simulation		
	parameter	uncertainty	1	1ST	1STm
		(%)	Uncertainty (%)		
	F28/F25	1.1	0.6	0.6	0.9
GODIVA	F49/F25	1.0	0.2	0.2	0.5
	F37/F25	1.4	0.5	0.5	0.7
	k _{eff}	0.1	0.7	0.7	0.7
	F28/F25	1.1	0.3	0.2	1.0
JEZEBEL-Pu239	F49/F25	0.9	0.2	0.2	0.5
	F37/F25	1.4	0.3	0.3	0.8
	k _{eff}	0.2	0.3	0.3	0.4
	F28/F25	3.0	0.9	0.9	1.9
ZPR6-7	F49/F25	2.1	0.4	0.4	0.6
	C28/F25	2.4	0.7	0.6	0.9
	k _{eff}	0.2	0.6	0.6	0.6
	F28/F25	2.7	1.2	1.2	2.3
	F49/F25	2.0	0.4	0.4	0.6
ZPPR9	C28/F25	1.9	0.7	0.6	0.9
	Na Void Step 3	1.9	1.9	1.9	2.5
	Na Void Step 5	1.9	2.2	2.2	3.0
	k _{eff}	0.1	0.6	0.6	0.6
JEZEBEL-Pu240	k _{eff}	0.2	0.5	0.5	0.5
ZPR6-7_Pu240	k _{eff}	0.2	0.6	0.6	0.6
JOYO	k _{eff}	0.2	0.9	0.9	0.9
	F28/F25	1.1	0.4	0.3	0.8
FLATTOP-Pu	F37/F25	1.4	0.4	0.4	0.8
	k _{eff}	0.3	0.4	0.4	0.5
	F28/F25	1.1	0.6	0.6	0.9
FLATTOP-25	F49/F25	0.9	0.2	0.2	0.5
	F37/F25	1.3	0.6	0.6	0.8
	k _{eff}	0.1	0.9	0.9	0.9
MIX-MET-FAST-001	k _{eff}	0.2	0.2	0.2	0.3
PU-MET-FAST-010	k _{eff}	0.2	0.4	0.4	0.5
PU-MET-FAST-009	k _{eff}	0.3	0.3	0.3	0.4

- 1: Reference solution.
- **1ST**: similar to **1**, UR ²³⁸U capture crosssection: standard.
- **1STm**: similar to **1ST**, however: $M_{i+1} = (M_{i+1,j,j'}) = M_0 - M_0 G_i^T (G_i M_0 G_i^T + V_E + V_M)^{-1} G_i M_0$ instead of

$$M_{i+1} = (M_{i+1,j,j'}) = M_i - M_i G_i^T (G_i M_i G_i^T + V_E + V_M)^{-1} G_i M_i$$

- 1-1ST: uncertainties similar. The COMMARA-2.0 uncertainty of the UR ²³⁸U capture crosssection is only ~1-3%.
- ISTm: as expected, uncertainties larger, though smaller than a priori values.

Adjustment of ²³⁸U with respect to JEFF-3.1 (1, 1ST)

- The adjustment of the capture crosssection is different for high energies > 1MeV.
- Indeed: COMMARA-2.0 correlations for capture crosssection between UR and fast energy range large.

Relative variation:

 $\frac{\sigma_{adj} - \sigma_{jeff}}{\sigma_{jeff}}$

Adjustment of ²³⁹Pu with respect to JEFF-3.1 (1, 1ST)

 The adjustment of the scattering and fission crosssections is somewhat stronger if the UR capture crosssection of ²³⁸U has no uncertainty.

Adjustment of ²³⁵U with respect to JEFF-3.1 (1, 1ST)

Page 12

Adjustment of ²³Na with respect to JEFF-3.1 (1, 1ST)

The adjustment of the scattering cross-sections is somewhat stronger if the UR capture crosssection of ²³⁸U has no uncertainty.

However: adjustments for ²³Na and ²³⁸U not reliable: asymptotic sensitivity coefficients to ²³Na and ²³⁸U of the integral parameters to assimilate dependent on the PIA sequence.

Adjustment of ²³⁸U with respect to JEFF-3.1 (1ST, 1STm)

Adjustment similar trends, however, as expected, stronger when using a priori variance/ covariance matrix at beginning of each incremental step.

Blue: *M*_i (Eq. (2.1)) Red: *M*₀ (Eq. (2.2))

Adjustment of ²³⁹Pu with respect to JEFF-3.1 (1ST, 1STm)

Adjustment similar trends, however >> 1 σ changes with a priori variance/ covariance matrix at beginning of incremental

Adjustment of ²³⁵U with respect to JEFF-3.1 (1ST, 1STm)

Adjustment of ²³Na with respect to JEFF-3.1 (**1ST**, **1STm**)

Adjustment: similar trends. however, as expected, stronger when using a priori variance/ covariance matrix at beginning of each incremental step.

Blue: *M*_i (Eq. (2.1)) Red: *M*₀ (Eq. (2.2))