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Reminders, context and objectives 

 

 

Bayesian inference (Generalize least square and Monte-Carlo) 

 

 

Systematic Microscopic Uncertainties: 

 

A. What ? 

B. Marginalization  

C. Covariances 239Pu, an example  

 

 

Integral Data Assimilation ans Syst. Uncertainties 

A. What ? 

B. Single experiment (JEZEBEL)  Covariances 239Pu, an example 

C. Several experiments : PU-SOL-THERM  Syst. Uncertainty 

D. A positive aspect of Syst. Uncertainties 

 

Conclusions and Perspectives 
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Issues : 
Systematic experimental uncertainties  

Phenomenological Nuclear reaction model theories + Parameters 

Model defects (Epistemic Uncertainties) 

Integral experiment assimilation 

Common Physics from RRR to Continuum 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  
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Integral experiments 
 

o Integrated measurements in angle/energy/space 

o Better overall precision)  <3% (1s) for difficult regions 

o Representativity w/t to Industrial concepts:   
o keff, reactivity effects, flux/power distribution … 

o Integral experiments correlations  

 (systematic uncertainties) 
o EvaluationProcessingTransport code feedback ND 

 

 

Microscopic experiments 
 

o Fine resolution in energy 

o All reactions: (n,), (n,f), (n,n’), (n,xn)… 

o Outgoing particles (n, , a...) caracterized in terms of 
spectrum/multiplicity/angular distribution… 

o Systematic uncertainties (normalization, background, detector 

efficiency…) 

Microscopic and Integral experiments 

Neutron flux in MINERVE 

Transmission  measurements at JRC/Geel (GELINA) 

Oscillation measurements in Minerve 
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Optical Models 

 

Statistical Model  

Transmission  Models 

R Matrix 

Nuclear reaction models 

Experiments (microscopic/integral) 

Bayesian inference technique 

Evaluation of uncertainties (variances and correlations) 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  
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Nuclear reaction models 

Experiments (microscopic/integral) 

Bayesian inference technique 

Evaluation of uncertainties (variances and correlations) 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  

 Microscopic Microscopic 

Integral 

Microscopic 
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Nuclear reaction models 

Experiments (microscopic/integral) 

Bayesian inference technique 

Evaluation of uncertainties (variances and correlations) 

CROSS SECTIONS “KNOWLEDGE” 

EVALUATION IN THE RESONANCE RANGE AND HIGHER  

 GLS 

BMC 
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Bayesian inference (probability density): 

Formulation: 

New 
measurements 

Model 
parameters 

a priori 

information 

Estimation of the first two moments  

of the a posteriori distribution 

)],Ux|y[p(likelihood|U)]xprior[p(,U)]y|xp(posterior[




EVALUATIONS AND UNCERTAINTIES 

GENERAL MATHEMATICAL FRAMEWORK 
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Estimation of a cost function 

(Generalized Chi-square) 

 

 

 

 

 

Bayesian inference (probability density): 

EVALUATIONS AND UNCERTAINTIES 

GENERAL MATHEMATICAL FRAMEWORK 
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Estimate 1st  two moments of                                

 with Monte-Carlo 

 

Sample of                                    

 

For each    associate a weight   

For ex. Likelihood  
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Maximum Entropy Principle 

Laplace approximation 

(Sammy,Refit,Conrad, SOK…) 

Monte-Carlo 

(BMC, Forward-Backward…) 
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COVARIANCES EVALUATION STRATEGY 
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MICROSCOPIC EXPERIMENT  

SYSTEMATIC UNCERTAINTIES   
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Counting rates: statistical uncertainties 
The more you count, the lower is the uncertainty 
Uncorrelated bins 

 
Normalization, efficiency, …. 

Asymptotic uncertainties  Constants 
Long range correlations 

 
 

Bayesian Inference issues : ex 239Pu 
Analysis of capture (Gwin 73) ; Syst. Unc.~ 3%  
« Classical» (GLS/BMC) for fission and radiative widths 

 
Obviously bad result (see Fig.) 
Due to the likelyhood  pdf and  experimental covariance  
 

 

 

 

 
Solution: Marginalisation of pdf’s 
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Nuisance parameters are necessary during comparisons with experiments  (data 
reduction, normalization,…), but not for the final evaluation 

Marginalization philosophy 

Model  
parameters 

« nuisance» 
parameters 

Marginalization :   

estimation of at least the first two moments of the marginal probability density 

Marginalization of the probability density: 

SYSTEMATIC EXPERIMENTAL UNCERTAINTIES 

MARGINALIZATION ?  

+ Covariances 
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Analytical method* : Full covariance kept:  
     

    with                                 and 

 
Hybrid Monte-Carlo/GLS**: 

1. Sampling of nuisances parameters following its pdf : 𝜃 k 

2. For each realization k, do a GLS 𝑥  k +𝑀𝑘 
3. Use total variance – covariance theorem on the K-Statistic 
 

Full Monte-Carlo*** : double Monte Carlo integration (BMC) 
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* B. Habert et al., Nuc. Sci. Eng., 166, 276 (2010) + PhD Thesis 

** C. De Saint Jean et al., Nuc. Sci. Eng., 161, 363 (2009). 

*** E. Privas PhD thesis  + C. De Saint Jean et al., EPJ Web (ND2016)   

SYSTEMATIC EXPERIMENTAL UNCERTAINTIES 

MARGINALIZATION   
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Resolved Resonance Range 

Analysis of main EXFOR experiments (E<2500 eV)  
 with R-Matrix code CONRAD. 

Marginalization of Exp. systematic uncertainties  
 (normalization,  background, …) 

Example  : Pu239  

|  PAGE 14 * G. Noguere, P. Archier et C. De Saint Jean : JEFFDOCs (04/15 ; 11/15 ; 04/16) 

Unresolved Resonance Range and Continuum 

Fit of JEFF3.2 with CONRAD  in house models  
Marginalization of Exp. systematic uncertainties  

 (normalization,  background, …)   
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* G. Noguere, P. Archier et C. De Saint Jean : JEFFDOCs (04/15 ; 11/15 ; 04/16) 

Example  : Pu239  

 

 

High impact of Exp. Systematic Uncertainties 

Long range correlations (~0.8-1) 

High uncertainties ~0.5-10 %  (Thermal Capture; Fission in Fast range) 

~1000 pcm on MISTRAL2 (EOLE Reactor) and ASTRID (FR prototype) 

Energy domain treated separatly 

Beware of potential impact for Fast Reactor (URR) 

Additional 

Experimental 

information 

needed 
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 Systematics  Uncertainties ** (see WPEC/SG33-SG39): 

o Fuel composition uncertainties 

o Detector efficiencies and calibrations 

o … 

 

 One experiment analyzed  

It will increase the initial uncertainty 

 

 Several experiments  

It will increase the initial uncertainty  

It will give a correlation coefficient between the experiments 

What are the effect on Integral Data Assimilation or Nuclear Data Validation ? 
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Systematic Uncertainties for Integral Experiments 4 



 

 Limited nuclear data adjustement () but with two schemes  

 
 

 

 

 

 

Data assimilation of JEZEBEL* 
 

 

 

 

Integral Data Assimilation and  

Fast energy range : 239Pu   

 
And/or 

Multigroup bbbbb   

 ,... ,, FissionOMPRRRx 


 
Integral Data  

Assimilation 

on Parameters 

 

 
Neutron/Gamma 

Transport 

 
)(xg




* C. De Saint Jean et al, Nuclear  Data Sheet 123 (2015), 178-184  

Need of a coherent ( Microscopic) prior 

(previous analysis) 

JEZEBEL is an indirect  

measurement of χ + 𝜐𝜎f 

Here : Focus on XS 

E~200-250 pcm !!!  

4 



 

 Limited nuclear data adjustement () but with two schemes  

 
 

 

 

 

 

Data assimilation of JEZEBEL* 
 

 

 

 

Integral Data Assimilation and  

Fast energy range : 239Pu   

* C. De Saint Jean et al, EPJ Web, ND2016 (2017) 

With a coherent ( Microscopic) prior 

Results: coherent for both schemes  

Bayesian Monte-Carlo ~ GLS 

Results: coherent for both methods 
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Data assimilation of JEZEBEL 
 

 

 

 

 

 Full nuclear data adjustement (, , )*  

 
 

 

 

 

Results are very sensitive to priors 

Even for this “clean” case, cross 

correlations are introduced between 

(, , )  
ENDF issue ; GND ? 

Uncertainty reduction ~ E  

250 pcm is low : Unrealistic ? Syst. Unc.? 

Integral Data Assimilation and  

Fast energy range : 239Pu   

* C. De Saint Jean et al, Nuclear  Data Sheet 123 (2015), 178-184  
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First Integral Experiment : PU-SOL-THERM-001-1 

 WATER-REFLECTED 11.5-INCH DIAMETER SPHERES OF PLUTONIUM NITRATE SOLUTIONS 
 

Fissile concentration (g/L)  73 

(H1)/(Pu240,Pu242,Pu241,Pu239,Pu238)  370.1757  

(H1)/(Pu241,Pu239)    352.9084 

Vecteur isotopique : 
 
 
 
 

Keff = 1.0000 ± 0.0050     E/C-1 (T4) = - 133 pcm 

Systematic Uncertainties for Integral Experiments 

Example of  Pu-Sol-Therm serie 

238Pu 239Pu 240Pu 241Pu 242Pu 

0.01% 95.01% 4.67% 0.31% 0.01% 

239Pu 240Pu 

96.88% 3.12% 

Second Integral Experiment : PU-SOL-THERM-002-1 

 WATER-REFLECTED 12-INCH DIAMETER SPHERES OF PLUTONIUM NITRATE SOLUTIONS 

Fissile concentration (g/L) 49.84 

(H1)/(Pu240,Pu239)   524.2683  

(H1)/(Pu239)   507.9775 

Vecteurs isotopiques : 
 
 
 
 

Keff = 1.0000 ± 0.0047     E/C-1 (T4) = - 12 pcm 

Integral Data Assimilation of Both PST on Pu Nuclear Data 

With a correlation coefficient : r  = 0 or 1 

4 



Systematic Uncertainties for Integral Experiments 

Example of  Pu-Sol-Therm serie 

Identical uncertainty reduction on 239Pu capture cross section 

Very different trends between r  = 0 or 1 
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Δρ 

Reflector worth 235U + reflector 238U 

FLATTOP 

235U 

GODIVA 

- = 

Systematic Uncertainties for Integral Experiments 

A positive use possible ! 

Contains fuel with equivalent caracteristics  

New interpretation of standard Integral Experiments* 

 

 

 

Conceive integral experiments with Syst. Uncertainty  

can permit to reach different Nuclear Data   

*D. Bernard et al., Nuclear  Data Sheet 118 (2014), 118-121  

@E. Privas et al. 

Contains fuel with common Syst. Uncertainties 
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Systematic Uncertainties for Integral Experiments 

Validation ; Figure of  merit ;   

Reduced value will be impacted by correlations  

Conclusions on the quality of the Library could be changed 

Reduce𝑑 𝜒2 
@ O. Cabellos, jefdoc-1843 
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Systematic Uncertainties for Integral Experiments 

Validation ; Figure of  merit ;   

Very usefull to identify outliers 

What happens when correlations exists ?  

Cumulative  𝜒2 
@ O. Cabellos, jefdoc-1843 
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Evaluation of systematic uncertainties is of prime interest for Nuclear Data evaluators  

Microscopic Experiments: 

 Still high Syst. Uncertainties on Fission (Continuum), Capture of Fissile isotopes 

 Mainly related to normalization, background, detectors efficiency, … 

 Create Evaluated Nuclear Data with long range (and high) correlations  

Integral Experiments: 

 A proper look on Syst. Uncert. for Integral Experiments is paramount  

 Go back to pre-ICSBEP (Experimental reports ?) 

  If no information be careful in the choice (r  = 0 or 1) 

 Syst. Uncert. will change adjustments results (trends or uncertainty reduction) SG46 

 Could be positive !!  

 Look at integral experiments such as godiva/flattop 

  Innovative Integral Experiments to be studied   
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