

INFLUENCE OF SYSTEMATIC EXPERIMENTAL UNCERTAINTIES IN THE EVALUATION OF NUCLEAR DATA

Cyrille De Saint Jean, Pascal Archier, Gilles Noguere, Pierre Leconte, D. Bernard, C. Carmouze and T. Nicol CEA/DEN/Cadarache

> JEFF-CHANDA Joint Winter Meeting November, 20/24, 2017 JEFFDOC-1880

www.cea.fr

Reminders, context and objectives

Bayesian inference (Generalize least square and Monte-Carlo)

Systematic Microscopic Uncertainties:

- A. What?
- B. Marginalization
- C. Covariances ²³⁹Pu, an example

Integral Data Assimilation ans Syst. Uncertainties

- A. What?
- B. Single experiment (JEZEBEL) \rightarrow Covariances ²³⁹Pu, an example
- C. Several experiments : PU-SOL-THERM \rightarrow Syst. Uncertainty
- D. A positive aspect of Syst. Uncertainties

Conclusions and Perspectives

Microscopic and Integral experiments

1

Microscopic experiments

- Fine resolution in energy
- All reactions: (n,γ) , (n,f), (n,n'), (n,xn)...
- Outgoing particles (n, γ , α ...) caracterized in terms of spectrum/multiplicity/angular distribution...
- Systematic uncertainties (normalization, background, detector efficiency...)

Integral experiments

- Integrated measurements in angle/energy/space
- Better overall precision) <3% (1s) for difficult regions
- Representativity w/t to Industrial concepts:
- keff, reactivity effects, flux/power distribution ...
- Integral experiments correlations (systematic uncertainties)
- Evaluation \rightarrow Processing \rightarrow Transport code \rightarrow feedback ND

Transmission measurements at JRC/Geel (GELINA)

CROSS SECTIONS "KNOWLEDGE" EVALUATION IN THE RESONANCE RANGE AND HIGHER

Bayesian inference technique

Evaluation of uncertainties (variances and correlations)

CROSS SECTIONS "KNOWLEDGE" EVALUATION IN THE RESONANCE RANGE AND HIGHER

Nuclear reaction models <u>Experiments (microscopic/integral)</u> Bayesian inference technique

7

Evaluation of uncertainties (variances and correlations)

CROSS SECTIONS "KNOWLEDGE" EVALUATION IN THE RESONANCE RANGE AND HIGHER

Nuclear reaction models Experiments (microscopic/integral) **Bayesian inference technique** Evaluation of uncertainties (variances and correlations)

EVALUATIONS AND UNCERTAINTIES GENERAL MATHEMATICAL FRAMEWORK

Bayesian inference (probability density):

Model $p(\vec{x} \mid M, \vec{y}, U) = \frac{p(\vec{x} \mid M, U) \cdot p(\vec{y} \mid M, \vec{x}, U)}{\int d\vec{x} \cdot p(\vec{x} \mid M, U) \cdot p(\vec{y} \mid M, \vec{x}, U)}$ Model New a priori parameters measurements information

Formulation:

posterior[$p(\vec{x}/\vec{y}, U)$] \propto *prior*[$p(\vec{x}/U)$] · *likelihood*[$p(\vec{y}/\vec{x}, U)$]

Estimation of the first two moments of the *a posteriori* distribution

COVARIANCES EVALUATION STRATEGY

CEA | 10 AVRIL 2012 | PAGE 10

MICROSCOPIC EXPERIMENT SYSTEMATIC UNCERTAINTIES

- Counting rates: statistical uncertainties The more you count, the lower is the uncertainty Uncorrelated bins
- Normalization, efficiency, Asymptotic uncertainties \rightarrow Constants Long range correlations
- Bayesian Inference issues : ex ²³⁹Pu
- Analysis of capture (Gwin 73); Syst. Unc.~ 3%
- « Classical» (GLS/BMC) for fission and radiative widths
- Obviously bad result (see Fig.)
- Due to the likelyhood pdf and experimental covariance

$$\chi_{GSL}^{2} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m}) + (\vec{y} - \vec{t} (\vec{x}))^{T} M_{y}^{-1} (\vec{y} - \vec{t} (\vec{x}))$$

Solution: Marginalisation of pdf's

estimation of at least the first two moments of the marginal probability density

3

Analytical method* : Full covariance kept:

 $G_x M_x^{Marg} G_x^T = GMG^T$ with $G = \begin{pmatrix} G_x \\ G_\theta \end{pmatrix}$ and $M = \begin{pmatrix} M_x & M_{x,\theta} \\ M_{\theta,x} & M_\theta \end{pmatrix}$

- Hybrid Monte-Carlo/GLS**:
- 1. Sampling of nuisances parameters following its pdf : $\vec{\theta}_k$
- 2. For each realization k, do a GLS $\rightarrow \vec{x}_k + M_k$
- 3. Use total variance covariance theorem on the K-Statistic

Full Monte-Carlo*** : double Monte Carlo integration (BMC)

$$p_{\theta}\left(\vec{x}|\vec{y},U\right) = p\left(\vec{x}|U\right) \int \frac{p\left(\vec{\theta}|U\right) \cdot p\left(\vec{y}|\vec{\theta},\vec{x},U\right)}{\int p\left(\vec{x}|U\right) \cdot p\left(\vec{y}|\vec{\theta},\vec{x},U\right) dx} d\vec{\theta}$$

* B. Habert et al., Nuc. Sci. Eng., 166, 276 (2010) + PhD Thesis
** C. De Saint Jean et al., Nuc. Sci. Eng., 161, 363 (2009).
*** E. Privas PhD thesis + C. De Saint Jean et al., EPJ Web (ND2016)

| PAGE 13

3

Example : Pu239

3

Unresolved Resonance Range and Continuum

Fit of JEFF3.2 with CONRAD → in house models
 Marginalization of Exp. systematic uncertainties (normalization, background, ...)

Example : Pu239

High impact of Exp. Systematic Uncertainties

- Long range correlations (~0.8-1)
- High uncertainties ~0.5-10 % (Thermal Capture; Fission in Fast range)
- ~1000 pcm on MISTRAL2 (EOLE Reactor) and ASTRID (FR prototype)

Energy domain treated separatly

Beware of potential impact for Fast Reactor (URR)

* G. Noguere, P. Archier et C. De Saint Jean : JEFFDOCs (04/15 ; 11/15 ; 04/16)

Additional Experimental information needed

3

4

- Systematics Uncertainties ** (see WPEC/SG33-SG39):
 - Fuel composition uncertainties
 - Detector efficiencies and calibrations
 - o ...
- One experiment analyzed
- It will increase the initial uncertainty
- Several experiments
- It will increase the initial uncertainty
- It will give a correlation coefficient between the experiments

What are the effect on Integral Data Assimilation or Nuclear Data Validation ?

Integral Data Assimilation and Fast energy range : ²³⁹Pu

Data assimilation of JEZEBEL* Limited nuclear data adjustement (σ) but with two schemes

Integral Data Assimilation and Fast energy range : ²³⁹Pu

Data assimilation of JEZEBEL

Full nuclear data adjustement (σ , χ , ν)*

Results are very sensitive to priors Even for this "clean" case, cross correlations are introduced between (σ , χ , ν) \rightarrow ENDF issue ; GND ? Uncertainty reduction ~ δ E 250 pcm is low : Unrealistic ? Syst. Unc.?

* C. De Saint Jean et al, Nuclear Data Sheet 123 (2015), 178-184

Systematic Uncertainties for Integral Experiments Example of Pu-Sol-Therm serie

4

First Integral Experiment : PU-SOL-THERM-001-1

WATER-REFLECTED 11.5-INCH DIAMETER SPHERES OF PLUTONIUM NITRATE SOLUTIONS

 Fissile concentration (g/L)
 73

 (H1)/(Pu240,Pu242,Pu241,Pu239,Pu238)
 370.1757

 (H1)/(Pu241,Pu239)
 352.9084

 Vecteur isotopique :
 352.9084

238Pu	239Pu	240Pu	241Pu	242Pu
0.01%	95.01%	4.67%	0.31%	0.01%

Keff = 1.0000 ± 0.0050

E/C-1 (T4) = - 133 pcm

Second Integral Experiment : PU-SOL-THERM-002-1

WATER-REFLECTED 12-INCH DIAMETER SPHERES OF PLUTONIUM NITRATE SOLUTIONS

Fissile concentration (g/L)	49.84
(H1)/(Pu240,Pu239)	524.2683
(H1)/(Pu239)	507.9775
Vecteurs isotopiques :	

239Pu	240Pu
96.88%	3.12%

 $Keff = 1.0000 \pm 0.0047$

E/C-1 (T4) = - 12 pcm

Integral Data Assimilation of Both PST on Pu Nuclear Data With a correlation coefficient : $\rho = 0$ or 1

Systematic Uncertainties for Integral Experiments Example of Pu-Sol-Therm serie

4

Identical uncertainty reduction on ²³⁹Pu capture cross section Very different trends between $\rho = 0$ or 1 Systematic Uncertainties for Integral Experiments A positive use possible !

4

Systematic Uncertainties for Integral Experiments Validation ; Figure of merit ;

4

	NEA								
	ENDF/B-VII.1	ENDF/B-VIIIb4	JEFF-3.1.1	JEFF-3.2	JEFF-3.3.T2	JEFF-3.3T2+	JEFF-3.3T3		
PU	4.2	2.2	2.9	3.6	2.8	2.4	2.4		
	(29)	(29)	(29)	(29)	(29)	(29)	(29)		
HEU	6.1	4.1	5.3	11.8	2.2	3.5	3.9		
	(42)	(42)	(42)	(42)	(42)	(42)	(42)		
	5.0	1.9	11.3	4.9	2.7	2.1	2.2		
IEU	(12)	(12)	(12)	(12)	(12)	(12)	(12)		
LEU	0.9	1.4	1.4	0.9	1.8	3.7	4.0		
	(13)	(13)	(13)	(13)	(13)	(13)	(13)		
11222	1.7	2.1	9.5	1.2	1.7	1.9	1.7		
0255	(18)	(18)	(18)	(18)	(18)	(18)	(18)		
міх	0.7	1.0	1.2	0.9	0.9	1.0	0.8		
	(8)	(8)	(8)	(8)	(8)	(8)	(8)		
SPEC	0.99249	0.99338	0.98719	0.98847	0.99142	0.99145	0.99118		
(C/E)	(1)	(1)	(1)	(1)	(1)	(1)	(1)		
Total	3.7	2.22	6.5	5.6	2.02	2.9	3.1		
	(123)	(123)	(123)	(123)	(123)	(123)	(123)		

Reduced χ^2

@ O. Cabellos, jefdoc-1843

Reduced value will be impacted by correlations Conclusions on the quality of the Library could be changed

Systematic Uncertainties for Integral Experiments Validation ; Figure of merit ;

4

What happens when correlations exists ?

- Evaluation of systematic uncertainties is of prime interest for Nuclear Data evaluators
- Microscopic Experiments:
 - Still high Syst. Uncertainties on Fission (Continuum), Capture of Fissile isotopes
 - Mainly related to normalization, background, detectors efficiency, ...
 - Create Evaluated Nuclear Data with long range (and high) correlations
- Integral Experiments:
 - A proper look on Syst. Uncert. for Integral Experiments is paramount
 - \rightarrow Go back to pre-ICSBEP (Experimental reports ?)
 - \rightarrow If no information \rightarrow be careful in the choice (ρ = 0 or 1)
 - ♦ Syst. Uncert. will change adjustments results (trends or uncertainty reduction) → SG46
 - Could be positive !!
 - \rightarrow Look at integral experiments such as godiva/flattop
 - ightarrow Innovative Integral Experiments to be studied