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• This work is still under development, and 
therefore there are not yet final results but still 
many questions to be answered. 

• Last time a new methodology was proposed, PIA 
(Progressive Incremental Adjustment); however, 
the proposed hierarchy for the progressive use of 
experiments was based on expert judgment more 
than a scientific sound basis. 

• This work tries to establish a methodology for 
ranking experiments by looking at the potential 
gain they can produce in an adjustment. 

• This work interconnects the calculation of rocket 
trajectories, money investment strategies, and 
nuclear data assimilation. 
 
 

Introduction 



 
 
 
 
 
 

PIA (Progressive Incremental Adjustment) 

 The proposed approach for avoiding compensations 
and give more reliable feedback to evaluator is to 
perform a progressive incremental adjustment. 

 In PIA the starting point is giving priority to the 
utilization of experiments of elemental type (those 
sensitive to a specific cross section), following a 
definite hierarchy on which type of experiment to use 
(see next slide).  

 Once the adjustment is performed, both the new 
adjusted data and the new covariance matrix are kept. 
This will limit the range of variability of the adjusted 
cross sections. 

 In the final steps integral experiments that are sensitive 
to a large variety of cross sections (global type like  
critical mass) are added. 
 



 
 
 
 
 
 

PIA Experiment Hierarchy 

 For actinides: 
1. Fission spectral indices: sensitive to fission cross sections (but 

also to inelastic and fission spectrum, in the case of threshold 
fission cross sections) 

2. Irradiation experiments: sensitive to capture cross sections (and 
second order to fission) and (n,2n) 

3. Sample oscillation experiments and other experiment sensitive to 
inelastic (e. g. transmission,  flat/steep adjoint as in STEK and 
SEG) 

4. Critical masses  
5. Reactivity variations (both reactivity coefficients and associated 

to fissile isotope variations in the same core geometry) 
 For structural materials: 

1. Propagation experiments (inelastic and elastic) 
2. Sample oscillations (add capture) 
3. Critical masses 
4. Reactivity variations (e.g. k-infinity type experiments, sodium 

void, control rods)  



σ change comparison PIA against Global  
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Standard deviation change comparison PIA 
against Global  
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Main Results 
 

 A new adjustment strategy has been proposed, PIA 
(Progressive Incremental Adjustment), where priority is 
given to elemental type experiments in order to cope 
with the problem of compensations. 

 An exercise applied to the previously presented 
ENDF/B-VII.0 (Global) adjustment has shown that, if we 
trust the elemental experiments, compensations occur 
in integral type of experiments (e. g. critical masses). 

  Moreover, PIA indicates some significant impact on 
both central values and standard deviations.  

 The new covariance matrix obtained by PIA produces 
significantly reduced uncertainty on target reactors. 
 

 
 
 



 
 
 
 
 
 

Kalman Filtering and Rocket Trajectories 
 

 Rudolf E. Kálmán proposed the formulation of the 
filtering technique, also known as linear quadratic 
estimation (LQE), in 1960 (there are claims that others 
proposed earlier, 1958, the same formulation). 

 The formulation is practically identical to the GLSM that 
we currently apply for our data adjustment, but applied 
only to one measurement. 

  Kalman filtering is commonly applied in his original 
form, which is progressive, by nuclear data evaluators. 

 It was during a visit by Kalman to NASA that he saw the 
applicability of his ideas to the problem of trajectory 
estimation for the Apollo program, leading to its 
incorporation in the Apollo navigation computer. 

 At the time analogue computers were used, relying on a 
model with parameters that were progressively 
improved by measuring the actual rocket position. 
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Trajectory Correction with Kalman Filtering 



 
 
 
 
 
 

Progressive Adjustment Issue 
 

 The Kalman filtering technique is naturally progressive 
because it is applied to a time series (including 
measurements), and, therefore, time dictates the 
progressive adjustment. 

 It is not clear to me how the nuclear data evaluators 
prioritize the measurements  to be used in a successive 
way in the Kalman filtering. 

 As the PIA exercise has shown, the succession of 
experiments to be used in the progressive adjustment 
will impact significantly the final results both in terms of 
central values and a posteriori covariance. 

 I have done an attempt to rank experiments by using a 
technique I have developed for optimizing portfolios of 
investment assets. 



 
 
 
 
 
 

MPT (Modern Portfolio Theory) 
 

 MPT defines an investment strategy that seeks to find the 
optimal portfolio of assets that, for a given return, minimizes 
the standard deviation or conversely maximizes the return 
for a given standard deviation. These pairs create a set 
called the efficient frontier, from which an optimal portfolio is 
selected given the amount of risk the investor is willing to 
assume. 

 In MPT the standard deviation of a portfolio characterize the 
volatility, and in turn its risk. More volatile (higher standard 
deviation) is the portfolio, riskier is the portfolio. 

 MPT formalizes the concept of diversification, which is 
habitually employed in asset selection to reduce the volatility 
of a portfolio. This can be achieved by selecting assets that 
are not correlated, or better yet negatively correlated, which 
results in a portfolio with a lower volatility than any of the 
individual assets selected. 



 
 
 
 
 
 

Sharpe Ratio Optimization 
 We construct a portfolio with N assets, and for each 

asset i there is a return 𝑟𝑟𝑖𝑖
𝒚𝒚, where y indicates the period 

of the return (e. g. year). The return of the portfolio is 
the weighted sum of the individual asset of the returns 
(sum of the weights equal to one). 

 Given the time distribution of the returns the standard 
deviation of each return can be calculated using the 
classical statistical formulation: 

𝑺𝑺𝑺𝑺𝒊𝒊 =
∑ (𝒓𝒓𝒊𝒊

𝒋𝒋 − 𝒓𝒓𝒊𝒊
𝝁𝝁)𝟐𝟐𝑵𝑵𝑵𝑵

𝒋𝒋=𝟏𝟏

𝑵𝑵𝑵𝑵 − 𝟏𝟏  

 The portfolio correlation matrix 𝐶𝐶𝑝𝑝 is a symmetric matrix 
containing 1 on the diagonal and on the off-diagonal in 
row i column k  𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑖𝑖  , calculated using again  the 
classical formula: 

𝒄𝒄𝒄𝒄𝒓𝒓𝒊𝒊𝒊𝒊 =
∑ ((𝒓𝒓𝒊𝒊

𝒋𝒋−𝒓𝒓𝒊𝒊
𝝁𝝁)(𝒓𝒓𝒊𝒊

𝒋𝒋 −𝒓𝒓𝒊𝒊
𝝁𝝁)𝑵𝑵𝑵𝑵

𝒋𝒋=𝟏𝟏

(𝑵𝑵𝑵𝑵−𝟏𝟏)𝑺𝑺𝑺𝑺𝒊𝒊𝑺𝑺𝑺𝑺𝒊𝒊
   

 
 



 
 
 
 
 
 

Sharpe Ratio Optimization 
Using the correlation matrix the portfolio covariance matrix 𝑺𝑺𝒑𝒑 
can be calculated in a matrix form as: 

     𝑺𝑺𝒑𝒑 = 𝑺𝑺𝑺𝑺 𝑪𝑪𝒑𝒑𝑺𝑺𝑺𝑺𝑻𝑻   
where 𝑺𝑺𝑺𝑺 is a square matrix containing all 𝑺𝑺𝑺𝑺𝒊𝒊 on the diagonal 
and zero everywhere else. Finally, the portfolio standard 
deviation 𝑺𝑺𝑺𝑺𝒑𝒑  can be calculated in matrix form as: 

𝑺𝑺𝑺𝑺𝒑𝒑 = 𝒘𝒘𝑺𝑺𝒑𝒑𝒘𝒘𝑻𝑻    
where 𝒘𝒘 and 𝒘𝒘𝑻𝑻 are column and row vectors containing the 
asset weights, respectively. 
 
We have proposed a new quantity, 𝐶𝐶𝑐𝑐𝑟𝑟𝑝𝑝 , to characterize the 
internal correlation of the portfolio. We start from the complete 
correlated and uncorrelated portfolio standard deviations: 

𝑺𝑺𝑺𝑺𝒑𝒑
𝒄𝒄𝒄𝒄 = ∑ 𝒘𝒘𝒊𝒊𝑺𝑺𝑺𝑺𝒊𝒊

𝑵𝑵
𝒊𝒊=𝟏𝟏  𝑺𝑺𝑺𝑺𝒑𝒑

𝒄𝒄𝒄𝒄 = ∑ (𝒘𝒘𝒊𝒊𝑺𝑺𝑺𝑺𝒊𝒊
𝑵𝑵
𝒊𝒊=𝟏𝟏 )𝟐𝟐  

 
 



 
 
 
 
 
 

Sharpe Ratio Optimization 
Then we can calculate, approximately the internal portfolio correlation as: 

 𝑪𝑪𝒄𝒄𝒓𝒓𝒑𝒑 = 𝑺𝑺𝑺𝑺𝒑𝒑−𝑺𝑺𝑺𝑺𝒑𝒑𝒄𝒄𝒄𝒄

𝑺𝑺𝑺𝑺𝒑𝒑𝒄𝒄𝒄𝒄
   

the smaller 𝑪𝑪𝒄𝒄𝒓𝒓𝒑𝒑 is, the more diversified the portfolio.  
   

Let us now introduce the risk adjusted performance measure. This measure, the Sharpe 
Ratio, is often mentioned as “Reward to Variability”. It is a way of ranking portfolios 
inside the efficient frontier described in MPT by return per unit of risk assumed. It is 
defined as: 

𝑺𝑺𝑺𝑺𝒑𝒑 =
𝒓𝒓𝒑𝒑𝒂𝒂 − 𝒓𝒓𝒇𝒇𝒓𝒓𝒂𝒂

𝑺𝑺𝑺𝑺𝒑𝒑 
 

Where 𝒓𝒓𝒑𝒑𝒂𝒂 is the mean annual portfolio return, 𝒓𝒓𝒇𝒇𝒓𝒓𝒂𝒂  is the mean annual risk-free interest 
rate (generally associated with cash). Note that this is very similar to the information 
ratio (mean over the standard deviation of a series of measurements). 
In order to find the optimal asset weights, the nonlinear optimization process 
maximizes the Sharpe Ratio with the constraint on the sum of the weights being equal 
to one. 

 
 



 
 
 
 
 
 

Application to Integral Experiments: REWIND 
Let’s consider the set of integral experiments we have as a “portfolio” of assets and 
calculate the optimal weights that maximize the portfolio “Sharpe Ratio”. The asset 
(experiment) return will be different following the application for which the adjustment 
is intended.  
First, let’s define some attributes of the portfolio. The covariance of the portfolio is 
calculated as: 

𝑺𝑺𝒑𝒑 = 𝑺𝑺𝑺𝑺 𝑪𝑪𝒑𝒑𝑺𝑺𝑺𝑺𝑻𝑻 
Where 𝑺𝑺𝑺𝑺  is the experiment standard deviation and 𝑪𝑪𝒑𝒑 is the correlation among 
experiments and are calculated using the usual formulation with sensitivity coefficients 
and cross section covariance. 

𝑪𝑪𝑬𝑬′𝑬𝑬 =
(𝑺𝑺𝑬𝑬′𝑴𝑴𝝈𝝈𝑺𝑺𝑬𝑬)

[ 𝑺𝑺𝑬𝑬′𝑴𝑴𝝈𝝈𝑺𝑺𝑬𝑬′ 𝑺𝑺𝑬𝑬𝑴𝑴𝝈𝝈𝑺𝑺𝑬𝑬 ]𝟏𝟏/𝟐𝟐 

The standard portfolio standard deviation is then: 
𝑺𝑺𝑺𝑺𝒑𝒑 = 𝒘𝒘𝑺𝑺𝒑𝒑𝒘𝒘𝑻𝑻 

While the internal portfolio correlation is defined as: 

 𝑪𝑪𝒄𝒄𝒓𝒓𝒑𝒑 =
𝑺𝑺𝑺𝑺𝒑𝒑 − 𝑺𝑺𝑺𝑺𝒑𝒑

𝒄𝒄𝒄𝒄

𝑺𝑺𝑺𝑺𝒑𝒑
𝒄𝒄𝒄𝒄  

 
 



 
 
 
 
 
 

Application to Integral Experiments: REWIND 
Now let’s define the Sharpe Ratio for the case we want to find the optimal experiment weights 
for improving the information we want on a set of isotopes like those of CIELO. In this case 
the return of each asset (experiment) is the potential gain an experiment can produce by 
reducing the uncertainty obtained by the usual sandwich formula limited to the isotopes 
under consideration.  However, to this we have to subtract the experimental uncertainty Ui 
(both from measurement and calculation). Similarly, the portfolio standard deviations is 
calculated using only the sensitivity coefficients and covariance data of the isotopes under 
considerations.   

𝑺𝑺𝑺𝑺𝒑𝒑 = ∑ 𝒘𝒘𝒊𝒊(𝑺𝑺𝑺𝑺𝒊𝒊−𝑼𝑼𝒊𝒊)𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑺𝑺𝑺𝑺𝒑𝒑 
     

Note that the Sharpe Ratio for each experiment, defined in this way, is very similar to the 
Ishikawa factor. In fact the Sharpe Ratio equal to zero corresponds to the Ishikawa factor 
equal to 1. Positive Sharpe ratio is what we want from an experiment  (corresponding to the 
Ishikawa factor greater than one). The optimization process maximizes this portfolio Sharpe 
Ratio in order to find the optimal weights, and, therefore we will obtain a ranking of the 
experiments. Subsequently we can use this ranking to apply a progressive adjustment like in 
PIA. Note that the optimization process will reward experiments that are not correlated. 
If, instead, the adjustment is targeting a specific reactor design, the experiment return (gain) 
will be defined in the Sharpe Ratio as the reduction of uncertainty obtained using the 
representativity factor. We will not see this application in the presentation. 
 
 



REWIND applied to SG33 set of experiments 
and 5 Isotopes: 23Na, 56Fe, 235U, 238U, 239Pu 
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Experiment Optimal weight 
% 

Rank Exp. Return % Sharpe Ratio 
Ishikawa 

Factor 
Uncert. before 

adjust. % 
Uncert. after 

adjust. % 

JEZ_Pu239 KEFF 27.8 2 0.45 0.69 1.50 0.30 0.15 
JEZ_Pu239 F28/F25 3.4 6 2.26 0.61 1.18 1.68 0.90 
JEZ_Pu239 F37/F25 5.0 5 0.91 0.39 0.71 1.02 0.64 
JEZ_Pu239 F49/F25 0.0 8 -0.13 -0.15 0.85 0.80 0.53 
JEZ_Pu240 KEFF 0.0 8 0.29 0.59 2.44 0.49 0.18 
FLATTOP KEFF 38.1 1 0.56 0.65 0.92 0.28 0.16 

FLATTOP F28/F25 0.0 8 1.22 0.40 0.84 1.56 0.84 
FLATTOP F37/F25 0.0 8 0.60 0.30 0.69 0.98 0.63 

ZPR6/7 KEFF 0.0 8 0.76 0.77 1.84 0.42 0.12 
ZPR6/7 F28/F25 0.0 8 2.97 0.46 0.63 2.19 1.41 
ZPR6/7 F49/F25 0.0 8 -1.70 -2.07 0.29 0.72 0.57 
ZPR6/7 C28/F25 0.0 8 -1.17 -0.78 0.47 1.26 0.90 

ZPR6/7 PU40 KEFF 0.0 8 0.77 0.78 1.92 0.42 0.12 
ZPPR9 KEFF 7.5 4 1.10 0.90 3.83 0.45 0.11 

ZPPR9 F28/F25 3.3 7 5.10 0.64 0.81 2.37 1.53 
ZPPR9 F49/F25 0.0 8 -1.26 -1.47 0.34 0.72 0.56 
ZPPR9 C28/F25 0.0 8 -0.45 -0.29 0.64 1.27 0.90 
ZPPR9 STEP3 0.0 8 -0.18 -0.02 0.70 5.44 3.93 
ZPPR9 STEP5 0.0 8 2.26 0.23 0.91 6.87 4.88 
JOYO KEFF 15.0 3 0.70 0.79 1.67 0.30 0.14 

Experiment Portfolio Internal Correlation: -0.02 



REWIND applied to SG33 set of experiments 
σ 

19 



REWIND applied to SG33 set of experiments 
σ 

20 



REWIND applied to SG33 set of experiments 
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σ 

22 



REWIND applied to SG33 set of experiments 
Standard Deviation 
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REWIND applied to SG33 set of experiments 
Standard Deviation 
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REWIND applied to SG33 set of experiments 
Standard Deviation 
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REWIND applied to SG33 set of experiments 
Standard Deviation 
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REWIND applied to SG33 set of experiments 
Standard Deviation 
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REWIND applied to SG33 set of experiments 
Standard Deviation 
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Conclusions 
 

 A new methodology, REWIND, based on optimizing the 
use of a  set of experiments using their potential gain in 
the adjustment aimed at different goals, has been 
developed for ranking experiments in a PIA strategy. The 
PIA strategy follows the original Kalman filtering 
approach. 

 However, the ranking favors more global experiments than 
the elemental type one, and, therefore, it is not clear if 
compensations are avoided (the original aim of PIA). 

 The REWIND approach is general and specific more 
appropriate functionals can be considered in the 
optimization step that give priority to the elemental 
experiments. 

 Another development would be to directly incorporate the 
REWIND weights in the adjustment formulation, so that the 
progressive adjustment procedure would be significantly 
simplified. 
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