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SG39 Deliverables 

 

Summary of Methodology 

 

1. Introduction 
For providing useful and physical feedback to nuclear data evaluators from cross section 

adjustment results, it is necessary to assess the reliability of the adjustment results.  For instance, 
the adjustment results may include so-called “compensation effects” which cause fictitious 
alterations of adjusted cross-sections by the cancellation of  two or more reactions of cross sections.  
Typical compensation effects are possible in the following reactions: 

 
- Pu-239 fission spectrum and inelastic in general 

• Equivalent effect through neutron spectrum changes 
- Capture and (n,2n) for irradiation experiments 

•  Same impact of disappearing the associated isotope 
- Capture and fission for spectral indices 

• e.g. U-238 capture (C28) and Pu-239 fission (F49) for C28/F49 
• Compensation between numerator and denominator 

- Many reactions for criticalities 
• Capture, fission, ν, χ, inelastic, elastic, … 

 
In addition, useless and unphysical systematic effects may occur in the cross section adjustments.  
To avoid the compensation effects and to point out systematic effects, several criteria with 
parameters/indices are recommended to use.  This document summarizes the methodology with the 
definitions of the parameters/indices.  Although a lot of parameters/indices are reported in the 
intermediate report of Subgroup 33 (Ref. 1), many institutions use their own different nomenclature 
to describe the parameters/indices about the cross section adjustment. Therefore, Subgroup 39 
proposes a common nomenclature for convenience. 
 

2. Preparation & Review 

2.1 Common nomenclature 
The following nomenclature is proposed and consistently used here. 
 

• 𝑁𝐸: number of experimental values used in cross section adjustment 
• 𝐸𝑖(𝑖 = 1, … ,𝑁𝐸): experimental value of measured integral parameter 𝑖 
• 𝐶𝑖(𝑖 = 1, … ,𝑁𝐸): “a priori” calculated value of integral parameter 𝑖 
• 𝐶𝑖′(𝑖 = 1, … ,𝑁𝐸): “a posteriori” calculated value of integral parameter 𝑖 
• 𝜎𝑖(𝑖 = 1, … ,𝑁𝐸): “a priori” cross section 
• 𝜎𝑖′(𝑖 = 1, … ,𝑁𝐸): “a posteriori” cross sections 
• 𝑆𝑖𝑖(= 𝑆𝜎,𝑖𝑖): sensitivity coefficient for integral parameter 𝑖 and cross section 𝑗 
• 𝑀𝐸𝐸(≡ 𝑀𝐸 + 𝑀𝐸): integral parameter covariance matrix 
• 𝑀𝐸: integral parameter covariance matrix due to experiment covariance 
• 𝑀𝐸: integral parameter covariance matrix due to calculation covariance 
• 𝑀𝜎: “a priori” cross section covariance matrix 
• 𝑀𝜎

′ : “a posteriori” cross section covariance matrix 
• 𝜒2(𝜎�): chi-square as a function of cross section 𝜎� to be minimized in the adjustment 
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• 𝜒𝑚𝑖𝑚
2 : minimized chi-square value 

• 𝐺(≡ 𝑀𝐸𝐸 + 𝑆𝑀𝜎𝑆𝑇) : total integral-parameter covariance matrix (to be inverted in 
adjustment formulas) 

• Matrix indexing: 
 

 

𝐴𝑖𝑖 = (𝐴)𝑖𝑖 = 𝑎𝑖𝑖  
𝐴𝑖∙ = (𝐴)𝑖● = (𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑚) 

𝐴∙𝑖 = (𝐴)●𝑖 = �

𝑎1𝑖
𝑎2𝑖
⋮

𝑎𝑚𝑖

� 

(2.1) 
(2.2) 

 
 

(2.3) 
 

 
 
where 
 

 𝐴 =  �

𝑎11 𝑎12 ⋯ 𝑎1𝑚
𝑎21 𝑎22 ⋯ 𝑎2𝑚
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑚

�. (2.4) 

 

2.2 Adjustment formulas 
In this section, the formulation of the cross section adjustment is reviewed with the common 

nomenclature.  The “a posteriori” cross section 𝜎′ is calculated as 
 
 𝜎′ = 𝜎 + 𝑀𝜎𝑆𝑇𝐺−1𝑆(𝐸 − 𝐶). (2.5) 
 
The associated “a posteriori” cross section covariance matrix 𝑀𝜎

′  is denoted as 
 
 𝑀𝜎

′ = 𝑀𝜎 −𝑀𝜎𝑆𝑇𝐺−1𝑆𝑀𝜎. (2.6) 
 
In the cross section adjustment, the chi-square function 𝜒2(𝜎�) to be minimized is described as 
 
 𝜒2(𝜎�) = (𝜎 − 𝜎�)𝑇𝑀𝜎

−1(𝜎 − 𝜎�) + �𝐸 − 𝐶(𝜎�)�𝑇𝑀𝐸𝐸
−1(𝐸 − 𝐶(𝜎�)). (2.7) 

 
The minimized chi-square value 𝜒𝑚𝑖𝑚

2  can be represented as below 
 

 𝜒𝑚𝑖𝑚
2 = (𝐸 − 𝐶)𝑇𝐺−1(𝐸 − 𝐶) 

= (𝜎 − 𝜎′)𝑇𝑀𝜎
−1(𝜎 − 𝜎′) + (𝐸 − 𝐶′)𝑇𝑀𝐸𝐸

−1(𝐸 − 𝐶′). (2.8) 

 
In contrast with the minimized chi-square value, one can define the initial chi-square value 𝜒𝑖𝑚𝑖𝑖2  as 
 

 
𝜒𝑖𝑚𝑖𝑖2 =  (𝜎 − 𝜎�)𝑇𝑀𝜎

−1(𝜎 − 𝜎�) + �𝐸 − 𝐶(𝜎�)�𝑇𝑀𝐸𝐸
−1�𝐸 − 𝐶(𝜎�)��

𝜎�=𝜎
 

= (𝐸 − 𝐶)𝑇𝑀𝐸𝐸
−1(𝐸 − 𝐶). 

 
(2.9) 

 

3. Premises of Valid Adjustment 
We should consider that the following premises are required for valid cross section adjustment. 

 
• No missing/underestimation of uncertainty 
• Valid nuclear data covariance: 𝑀𝜎 
• Valid experiment covariance: 𝑀𝐸 
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• Valid calculation covariance: 𝑀𝐸 
• Consistency of C/E values and covariance matrices (=chi-square test), i.e., the next 

equation should be satisfied, 
 
 χ𝑚𝑖𝑚

2 𝑁𝐸⁄ ≈ 1. (3.1) 
 
In addition, we should note the following points in the adjustment. 
 

• If there are missing isotopes and reactions in nuclear data covariance (i.e. extreme 
underestimation), variations of some other cross sections could be unreliable due to 
compensations. 

• Underestimation of experiment and/or calculation uncertainty could give unreliable results 
as well. 

• Overestimation of experiment and/or calculation uncertainty does not affect adjustment 
results because it is equivalent to elimination of the experiment. 

 

4. Assessment of Adjustment 
It is possible to classify assessment techniques into two major categories of (1) assessment 

before adjustment that is independent from the set of experiments, and (2) assessment after 
adjustment that depends on the set of experiments.  Actually, these assessments often applied 
repeatedly with changing the set of experiments.  These repeated assessment procedures can be 
used for interpreting the adjustment results. 

4.1 Assessment before adjustment 
The assessment before adjustment is useful for selecting the integral experiments. 

(1) Representativity factor 

Representativity factor between two experiments, 𝑖 and 𝑖′is defined as 
 

 𝑓𝑖𝑖′ ≡
(𝑆𝑖′𝑀𝜎𝑆𝑖𝑇)

��𝑆𝑖′𝑀𝜎𝑆𝑖′
𝑇�(𝑆𝑖𝑀𝜎𝑆𝑖𝑇)�1 2⁄  . (4.1) 

 
The representativity factor corresponds to the correlation factor.  The complementarity of the 
experiments can be established by looking at the representativity factor 𝑓𝑖𝑖′  among the selected 
experiments. 
 

• If the representativity factor 𝑓𝑖𝑖′ ≪ 1, 
- there is strong complementarity between experiments 𝑖 and 𝑖′. 

 

(2) Individual chi-value measured in sigmas 
Individual chi-value measured in sigmas is defined as 

 

 
𝜒𝑖𝑚𝑖,𝑖 ≡

|𝐸𝑖 − 𝐶𝑖|

�𝑆𝑖𝑀𝜎𝑆𝑖𝑇 + (𝑀𝐸𝐸)𝑖𝑖
 

= �(𝐸𝑖 − 𝐶𝑖)2(𝐺𝑖𝑖)−1. 

 
 
 

(4.2) 
 
This value is corresponing to the ratio of |𝐶 𝐸⁄ − 1| to the total uncertainty. 
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• If the individual chi-value measured in sigmas 𝜒𝑖𝑚𝑖,𝑖 ≫ 1, 
- inconsistency may exist between |𝐶 − 𝐸| and covariance matrices, 𝑆𝑀𝜎𝑆, 𝑀𝐸 and 𝑀𝐸. 

 

(3) Diagonal chi-value measured in sigmas 
Diagonal chi-value measured in sigmas is defined as 

 

 
𝜒𝑖𝑖𝑑𝑑,𝑖 ≡ �(𝐸𝑖 − 𝐶𝑖)2(𝐺−1)𝑖𝑖 

=
|𝐸𝑖 − 𝐶𝑖|

�((𝑆𝑀𝜎𝑆 + 𝑀𝐸𝐸)−1)𝑖𝑖
≠ 𝜒𝑖𝑚𝑖,𝑖 . 

 
 

(4.3) 
 
This value is similar to the individual chi-value 𝜒𝑖𝑚𝑖,𝑖 but it takes into account the correlations (both 
among integral parameters and among cross sections). 
 

• If the diagonal chi-value measured in sigmas 𝜒𝑖𝑖𝑑𝑑,𝑖 ≫ 1, 
- inconsistency may exist between |𝐶 − 𝐸| and covariance matrices, 𝑆𝑀𝜎𝑆, 𝑀𝐸 and 𝑀𝐸. 

 

(4) Contribution to chi-square value (Ref.2) 
Contribution to chi-square value is defined as 

 

 𝜒𝑐𝑐𝑚,𝑖
2 ≡

(𝐸 − 𝐶)𝑇(𝐺−1)𝑖●(𝐸𝑖 − 𝐶𝑖)
𝑁𝐸

. (4.4) 

 
This value means a contribution to the “a posteriori” chi-square value. 
 

• If the contribution to chi-square value 𝜒𝑐𝑐𝑚,𝑖
2 < 0, 

- the corresponding integral experiment 𝑖 is very effective in the adjustment. 
 

(5) Ishikawa factor 

Ishikawa factor for the integral experiment 𝑖 is defined as 
 

 𝐼𝑆𝑖 ≡
𝑆𝑖𝑀𝜎𝑆𝑖𝑇

(𝑀𝐸𝐸)𝑖𝑖
. (4.5) 

 
This factor can be used to determine whether the experiment 𝑖 is useful to reduce the cross section 
uncertainty.  In addition, it is useful to points out the possibility of inconsistency between the cross 
section covariance matrix 𝑀𝜎 and the integral parameter covariance matrix 𝑀𝐸𝐸. 
 

• If the Ishikawa factor 𝐼𝑆𝑖 ≫ 1, 
- 𝑆𝑖𝑀𝜎

′ 𝑆𝑖𝑇 ≈ (𝑀𝐸𝐸)𝑖𝑖 
- i.e., the experiment 𝑖 is very useful, and the “a posteriori” cross section covariance will 

be reduced to the same level as the integral parameter covariance. 
- or otherwise, the integral parameter covariance 𝑀𝐸𝐸 is wrongly underestimated. 

• If the Ishikawa factor 𝐼𝑆𝑖 ≪ 1 , 
- 𝜎′ ≈ 𝜎 and 𝑆𝑖𝑀𝜎

′ 𝑆𝑖𝑇 ≈ 𝑆𝑖𝑀𝜎𝑆𝑖𝑇 
- i.e., the experiment 𝑖 is not so useful, and the cross sections are unchanged. 

• If the Ishikawa factor 𝐼𝑆𝑖 ≈ 1 , 
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- 𝑆𝑖𝑀𝜎
′ 𝑆𝑖𝑇 ≈

1
2
𝑆𝑖𝑀𝜎𝑆𝑖𝑇 

- i.e., the experiment 𝑖 is useful, and the “a posteriori” cross section covariance will be 
reduced to approximately half. 

 

4.2 Assessment after adjustment 
It is recommended to carefully assess the adjustment results to point out unreliable and/or 

unphysical adjustments as below: 
 

• Detection of unreliable adjustments 
- Rejection of the associated experiment is suggested 

• Cross section variation is larger than one sigma of the “a priori” standard 
deviation, and no abnormality is observed in “a priori” cross section 
covariance matrix 

- Physical mechanism should be investigated 
• Large variations of the cross sections are observed in energy ranges, isotopes 

or reactions that are not the main target 
• Large variations of the cross sections are produced but the “a posteriori” 

associated standard deviation reductions are small 
- Recommended checks 

• Comparison of adjusted results with existing validated nuclear data files 
and/or reliable differential measurements 

• After adjustment if chi-square value is not satisfactory (> 1), experiments can be removed 
(chi-filtering) based either on diagonal chi-square value or chi-square contribution . 

• For instance the “a posteriori” (= minimum) chi-square contribution indicates the integral 
parameters that contribute more to the final 𝜒𝑚𝑖𝑚

2 . In this way, it is possible to classify in a 
hierarchical way which experiment should be discarded or reconsidered. It has to be noted 
that an experiment can give a negative contribution, which means that the corresponding 
integral parameter is very effective in the adjustment.  

 

4.3 Interpretation of adjustment mechanism 
In some cases, it is useful to interpret the adjustment mechanism for validating a specific 

cross section adjustment result.  One can detect the compensation effects by understanding the 
adjustment mechanism.  For this purpose, three indices are recently proposed (Ref.3). 

(1) Mobility in adjustment 

Square root of mobility for the reaction 𝑗 is defeined as 
 

 �𝐷𝑖 = sgn�𝑀𝜎,𝑖𝐽���𝑀𝜎,𝑖𝐽�, (4.6) 

 
where sgn(𝑥) = 𝑥 |𝑥|⁄  for x ≠ 0,  sgn(𝑥) = 0 for x = 0, and 
 
 𝐽 = (1 1 ⋯ 1)𝑇. (4.7) 
 
This index is considered as a pseudo standard deviation which includes correlation factors.  If all 
non-diagonal elements are zero, it is equivalent to the standard deviation.  The standard deviation is 
often used for interpreting the adjustment results because it is approximately proportional to cross 
section alteration.  However, it is not always true.  In that case, it is recommended to use the square 
root of mobility. 
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(2) Adjustment motive force 

Adjustment motive force of the experiment 𝑖 for the nuclear reaction 𝑗 is defined as 
 

 𝐹𝑖,𝑖 =
��Δ𝜎𝜎 �𝑖,𝑖

�

‖𝐽‖
cos𝜃. (4.8) 

 
where ‖⋅‖ is the Euclidean norm,  
 

 �
Δ𝜎
𝜎 �𝑖,𝑖

= 𝑀𝜎,𝑖𝑆𝑖,𝑖𝑇 𝐺𝑖,𝑖−1 �𝐽 −
𝐶𝑖
𝐸𝑖
�, (4.9) 

 
and 
 

 cos𝜃 =
�Δ𝜎𝜎 �𝑖,𝑖

⋅ 𝐽

��Δ𝜎𝜎 �𝑖,𝑖
� ⋅ ‖𝐽‖

 . (4.10) 

 
Here, (Δ𝜎 𝜎⁄ )𝑖,𝑖 is a special adjustment result, in which only one nuclear reaction 𝑗 is adjusted by 
using only one integral experiment 𝑖.  The adjustment motive force is considered as an average 
value of the cross section alterations over all energy group.  By using the adjustment motive force, 
one can arrange the experiments in a unique order, and identify the most influential experiment to 
the alteration of the specific cross section.  Note, however, that the discussion with the motive force 
(and the adjustment potential described later), is limited to the correlations in energy of a specific 
reaction and of a specific isotope because of their definition. In other words, cross correlation 
among reactions and among isotopes cannot be discussed with the adjustment force. 
 

(3) Adjustment potential 
The adjustment potential is calculated as well as the adjustment motive force by replacing the 

𝐶𝑖 𝐸𝑖⁄  with averaged 𝐶𝐼� /𝐸𝐼�  over a set of integral parameters 𝐼 , which is related to the integral 
parameter 𝑖.  For instance, one can define 𝐼 as a set of specific integral parameters measured in a 
series of experiments, which is same as the integral parameter 𝑖. 

By using the adjustment motive force and the adjustment potential, one can discuss the 
mechanism of adjustment with the following assumptions: 
 

• If only one integral experiment has a large adjustment motive force for a reaction, the cross 
section of the reaction is freely adjustable. 

• If more than two integral experiments with large adjustment potentials have quite different 
values of motive forces, it is considered as a conflict. In this case, the cross section of the 
reaction is not significantly adjusted. Then, the other freely –adjustable cross sections are 
altered. 

 

5. Avoiding Compensation Effects 
To avoid the compensation effects, Subgroup 39 proposes two major classes of methods, static 

method and dynamic method, as below.  
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5.1 Static Method 
 

• Use of specific experiments 
- “Flat” or “steep” adjoint flux reactivity experiments 

• To separate inelastic from absorption cross sections 
- Neutron transmission of leakage experiments 

• Sensitive mostly for inelastic 
- Reaction rate distribution 

• Sensitive mostly for elastic and inelastic 
- Reaction rate ratio 

• Sensitive mostly for specific reactions 
- Sample oscillations 

 

5.2 Dynamic Method 
 

• Physical interpretation of adjustments 
- To understand the mechanism of adjustments 

• If the compensation effect is reasonable and physical, we may rely on the 
adjustment results 

- One possible way is to use the adjustment motive force and adjustment potential 
- It works for limited cases, for example, a small case which uses a few of experiments 
- More sophisticated method is needed to settle this issue 

 

6. Remarks on the “A Posteriori” Covariance Matrix 
Once we achieve a reliable cross section adjustment result without compensation effects, we 

may reflect the result to nuclear data evaluation.  However, we should notice that the “a posteriori” 
covariance matrix has been fully correlated by the cross-section adjustment procedure.  This issue 
has been pointed out in Subgroup 33 (Ref.4).  This section is devoted to review and summarize it. 

 
The global “a priori” correlation matrix 𝑀𝑦 has the form: 
 

 𝑀𝑦 = �𝑀𝜎 0
0 𝑀𝐸𝐸

�. (7.1) 

 
The global “a posteriori” correlation matrix is denoted as 
 
 𝑀𝑦

′ = �𝐼 − 𝑀𝑦𝑆𝑦𝑇𝐺−1𝑆𝑦�𝑀𝑦. (7.2) 
 
𝑆𝑦 is the global sensitivity matrix with dimension (𝑁𝜎 + 𝑁𝐸) × 𝑁𝐸 where 𝑁𝜎 is the total number of 
cross sections and 𝑁𝐸 is the total number of integral experiments: 
 

 𝑆𝑦 =

⎝

⎛

𝑆1,1 𝑆1,2
𝑆2,1 𝑆2,2

⋯ 𝑆1,(𝑁𝑠+𝑁𝐸)
⋯ 𝑆2,(𝑁𝑠+𝑁𝐸)

⋮ ⋮
𝑆𝑁𝐸,1 𝑆𝑁𝐸,2

⋱ ⋮
⋯ 𝑆𝑁𝐸,(𝑁𝑠+𝑁𝐸)⎠

⎞ (7.3) 

 
The matrix 𝑆𝑦 can be rewritten as a vector with two components, each being a matrix: 
 
 𝑆𝑦 = (𝑆𝜎 𝑆𝐸𝐸) = (𝑆𝜎 𝐼) (7.4) 
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where 𝑆𝜎 (dimension 𝑁𝜎 × 𝑁𝐸) is the sensitivity matrix of the integral experiments with respect to 
the cross sections and 𝑆𝐸𝐸 is a square identity matrix (dimension 𝑁𝐸 × 𝑁𝐸). 
Finally: 
 

 

𝐺 = 𝑆𝑦𝑀𝑦𝑆𝑦𝑇

= (𝑆𝜎 𝐼) �𝑀𝜎 0
0 𝑀𝐸𝐸

� �𝑆𝜎
𝑇

𝐼
�

= (𝑆𝜎𝑀𝜎 𝑀𝐸𝐸) �𝑆𝜎
𝑇

𝐼
�

= 𝑆𝜎𝑀𝜎𝑆𝜎𝑇 + 𝑀𝐸𝐸 

(7.5) 

 
with dimension 𝑁𝐸 × 𝑁𝐸 
 
 𝐺−1 = (𝑆𝜎𝑀𝜎𝑆𝜎𝑇 + 𝑀𝐸𝐸)−1 (7.6) 
 
The global “a posteriori” covariance matrix: 
 

 𝑀𝑦
′ = �

𝑀𝜎
′ 𝑀𝜎,𝐸𝐸

′

𝑀𝐸𝐸,𝜎
′ 𝑀𝐸𝐸

′ � (7.7) 

 
On the other hand, the global “a posteriori” covariance matrix 𝑀𝑦

′  is rewritten from Eq. (7.2): 
 

 

𝑀𝑦
′ = �𝐼 − 𝑀𝑦𝑆𝑦𝑇𝐺−1𝑆𝑦�𝑀𝑦

= �𝐼 − �𝑀𝜎 0
0 𝑀𝐸𝐸

� �𝑆𝜎
𝑇

𝐼
� 𝐺−1(𝑆𝜎 𝐼)� �𝑀𝜎 0

0 𝑀𝐸𝐸
�

= �𝐼 − �𝑀𝜎𝑆𝜎𝑇
𝑀𝐸𝐸

�𝐺−1(𝑆𝜎 𝐼)� �𝑀𝜎 0
0 𝑀𝐸𝐸

�

= �𝐼 − �𝑀𝜎𝑆𝜎𝑇𝐺−1𝑆𝜎 𝑀𝜎𝑆𝜎𝑇𝐺−1

𝑀𝐸𝐸𝐺−1𝑆𝜎 𝑀𝐸𝐸𝐺−1
�� �𝑀𝜎 0

0 𝑀𝐸𝐸
�

= �𝐼 − 𝑀𝜎𝑆𝜎𝑇𝐺−1𝑆𝜎 𝑀𝜎𝑆𝜎𝑇𝐺−1

𝑀𝐸𝐸𝐺−1𝑆𝜎 𝐼 − 𝑀𝐸𝐸𝐺−1
� �𝑀𝜎 0

0 𝑀𝐸𝐸
�

= �𝑀𝜎 −𝑀𝜎𝑆𝜎𝑇𝐺−1𝑆𝜎𝑀𝜎 𝑀𝜎𝑆𝜎𝑇𝐺−1𝑀𝐸𝐸
𝑀𝐸𝐸𝐺−1𝑆𝜎𝑀𝜎 𝑀𝐸𝐸 − 𝑀𝐸𝐸𝐺−1𝑀𝐸𝐸

� 

(7.2’) 

 
By comparing Eq. (7.7) with Eq. (7.2'), one can derive the following equations. 
 
The “a posteriori” cross section covariance matrix: 
 
 𝑀𝜎

′ = 𝑀𝜎 −𝑀𝜎𝑆𝜎𝑇𝐺−1𝑆𝜎𝑀𝜎 (7.8) 
 
The “a posteriori” integral parameter covariance matrix: 
 
 𝑀𝐸𝐸

′ = 𝑀𝐸𝐸 −𝑀𝐸𝐸𝐺−1𝑀𝐸𝐸 (7.9) 
 
The “a posteriori” integral parameter/cross section correlation matrix: 
 

 𝑀𝐸𝐸,𝜎
′ = �𝑀𝜎,𝐸𝐸

′ �𝑇

= 𝑀𝐸𝐸𝐺−1𝑆𝜎𝑀𝜎 
(7.10) 
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In addition, Eq. (7.10) can be written more precisely: 
 

 

𝑀𝐸𝐸,𝜎
′ = 𝑀𝜎,𝐸𝐸

′𝑇

= (𝑀𝜎𝑆𝜎𝑇𝐺−1𝑀𝐸𝐸)𝑇
= 𝑀𝐸𝐸

𝑇 (𝐺−1)𝑇(𝑆𝜎𝑇)𝑇𝑀𝜎
𝑇

= 𝑀𝐸𝐸𝐺−1𝑆𝜎𝑀𝜎 

(7.10’) 

 
The above derivation clearly articulates that the global “a posteriori” correlation matrix is fully 
correlated not only for the “a posteriori” cross sections but also for the “a posteriori” integral 
parameter.  In addition, correlations are raised between the cross section and the integral parameters. 
 

7. Concluding Remarks 
The methodology to assess the cross section adjustments are summarized with the proposed 

common nomenclature.  Some of the assessment parameters/indices are well-established and used 
in many institutions.  To achieve a reliable cross section adjustment result, one should make full use 
of the methodology.  In addition, the methodology itself has room for improvement especially for 
avoiding the compensation effects. 

On the other hand, the following remarks on the covariance matrix are noteworthy: 
 

• Not only the standard deviation of the “a priori” covariance matrix but also the correlation 
significantly affect the adjustment results. 

• The “a posteriori” correlation matrix is full and has a significant impact in reducing the “a 
posteriori” uncertainty. 

• The “a posteriori” correlations are useful and physical since they come from combination of 
two physical data, i.e. differential and integral experiments. 

• Once the adjustment is utilized, not only the adjusted cross-sections but the “a posteriori” 
correlations should be reflected on the nuclear data evaluation, otherwise it might be 
unphysical. 
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