IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Sensitivity Computation with Monte Carlo Methods (Action C8, WPEC/Sg.39)

E. Ivanov T. Ivanova

WPEC/Sg. 39 Meeting Novembre 27-28, 2014 NEA, Issy-les-Moulineaux, France

General Remarks

- Objective of the exercise is to test continuous energy (CE) and continuous angular distribution sensitivity capabilities implemented in Monte Carlo codes
- Monte Carlo (MC) tools compute CE sensitivity coefficients in terms of Fréshet derivatives, i.e., physical meaning of the coefficient is linear response of k_{eff} on multiplication of cross sections profile on a scalar value
- In contrary with deterministic approaches, Monte Carlo perturbation theory does not use the following bi-orthogonal ration below, where *i*, *j* are orders of modes

$$\left\langle \lambda_{i} \cdot \hat{\mathbf{F}} \cdot \vec{\mathbf{\Phi}}_{i}, \vec{\mathbf{\Psi}}_{j} \right\rangle = \left\langle \lambda_{j} \cdot \hat{\mathbf{F}}^{+} \cdot \vec{\mathbf{\Psi}}_{j}, \vec{\mathbf{\Phi}}_{i} \right\rangle = a_{i,j} \cdot \delta_{ij}$$

Contributors

James Dyrda	AWE
Evgeny Ivanov, Maria Brovchenko	IRSN
Ian Hill	NEA
Mathieu Hursin, Sandro Pelloni	PSI
Brian Kiedrowski	LANL
Ivan Kodeli	IJS
Christopher Perfetti, Bradley Rearden	ORNL

Selected ICSBEP Benchmarks

Popsy (Flattop-Pu) is a plutonium (94 wt% ²³⁹Pu) sphere surrounded by a thick reflector of natural uranium.
 PU-MET-FAST-006. Spherical model.

Topsy (Flattop 25) is a highly enriched (93 wt%) uranium sphere surrounded by a thick reflector of natural uranium.
 HEU-MET-FAST-028. Spherical model.

ZPR 9/34 loading 303 is a highly enriched uranium/ iron benchmark, reflected by steel.

• HEU-MET-INTER-001. RZ model.

ZPR 6/10 loading 24 is the core with heterogeneous plutonium metal fuel with carbon/stainless steel dilutions, and a steel reflector.

PU-MET-INTER-002. RZ model.

Codes, Methods, Participants

MONK: MC Fine-group Derivative operator sampling AWE

- SERPENT v2: MC CE Iterated Fission Probability (IFP) PSI
- ANISN/PARTISN: Deterministic MG IJS
- SCALE 6.1/TSUNANI-1D: Deterministic SN MG IRSN
- SCALE 6.1/TSUNAMI-3D: MC MG IRSN
- SCALE 6.2B: MC CE IFP
 - SCALE 6.2B: MC CE CLUTCH
 - MCNP6: MC CE IFP

ORNL, PSI, IRSN

- ORNL, PSI, IRSN
- LANL, NEA, IRSN

Profiles Computations

Participant	ΤοοΙ	Mod el	Cross sections	Meth od	Output, groups
AWE	MONK	3D	CE ENDF/B-VII.0 JEFF3.1	MC	33
PSI	SERPENT v2	3D	CE ENDF/B-VII	MC	33
NEA, LANL, IRSN	MCNP6	3D	CE, ENDF/B-VII.1	MC	238, 33
IRSN	SCALE 6.1	1D	MG, ENDF/B-VII.0	SN	238
PSI, ORNL, IRSN	SCALE 6.2B	3D	CE, ENDF/B-VII.1, 0	MC	238
JSI	ANISN/PARTISN	1D	See presentation by I. Kodeli	SN	33

- 238-gr. sensitivities converted into 33 gr. by IRSN BERING code (E. Ivanov)
- 33-gr. sensitivities converted to SCALE/sdf format by IRSN scripts (E. Ivanov)
- MCNP6 output converted into SCALE/sdf format by NEA script (I. Hill)
- Sensitivity profiles are presented using SCALE/Javapeno that reads *.sdf

PMF-006 (Flattop-Pu or Popsy)

Plutonium (94 wt ²³⁹Pu) sphere surrounded by a thick reflector of natural uranium. Sensitive to scattering on heavy metals, and threshold reactions.

k_{bench}=1.0000±0.0030

Popsy: Integrated Sensitivities (1/3)

	SERPENT	MONK ENDF	MONK JEFF	MCNP6	SCALE 6.2	MCNP6 238 gr	
U235-capture	-0,05	-0,06	-0,05	-0,05	-0,07	-0.05	
U235-n, 2n	0,00	0,00	0,00	0,00	0,00	0.00	
U235-fission	0,96	0,75	0,75	0,74	1,01	0.75	
U235-elastic	0,09	0,07	0,08	0,12	0,08	0.08	
U235-inelastic	0,03	0,03	0,03	0,02	0,02	0.03	
U235-nu-bar	1,09	1,26	1,22	1,02	1,45	1.04	
U238-capture	-4,00	-3,92	-4,04	-3,97	-4,08	-3.97	
U238-n, 2n	0,08	0,07	0,10	0,06	0,19	0.10	
U238-fission	6,30	5,99	5,81	5,62	5,82	5.73	
U238-elastic	13,77	13,25	13,70	13,08	13,39	13.75	
U238-inelastic	5,92	6,26	6,41	6,32	6,22	6.51	
U238-nu-bar	7,95	9,58	8,03	7,71	7,98	7.83	
Pu239-capture	-1,39	-1,71	-1,40	-1,28	-1,28	-1.29	
Pu239-n, 2n	0,03	0,02	0,04	0,03	0,02	0.03	
Pu239-fission	62,43	63,26	63,21	63,53	62,64	63.32	
Pu239-elastic	2,22	2,49	2,37	2,32	2,13	2.19	
Pu239-inelastic	1,01	1,06	1,04	1,13	1,10	1.24	
Pu239-nu-bar	87,94	84,83	85,79	88,33	87,30	88.20	
Pu240-capture	-0,09	-0,12	-0,10	-0,10	-0,10	-0.10	
Pu240-n, 2n	0,00	0,00	0,00	0,00	0,00	0.00	
Pu240-fission	1,95	1,94	1,91	1,91	1,88	1.91	
Pu240-elastic	0,11	0,14	0,15	0,07	0,12	0.12	
Pu240-inelastic	0,07	0,07	0,08	0,08	0,05	0.06	
Pu240-nu-bar	2,73	3,10	3,00	2,66	2,62	2.65	
Pu241-capture	-0,01	-0,01	-0,01	-0,01	-0,01	-0.01	
Pu241-n, 2n	0,00	0,00	0,00	0,00	0,00	0.00	
Pu241-fission	0,20	0,22	0,19	0,19	0,19	0.19	
Pu241-elastic	0,01	0,00	0,01	0,01	0,01	0.01	
Pu241-inelastic	0,00	0,00	0,00	0,01	0,00	0.01	
Pu241-nu-bar	0,28	0,02	0,40	0,27	0,27	0.27	

Popsy: Integrated Sensitivities (2/3)

Popsy: Integrated Sensitivities (3/3)

IRSN

Popsy: Uncertainties by reactions

Popsy: Pu-239 Fission Profiles

Popsy: Pu-239 Capture Profiles

IRSN 13

Popsy: Pu-239 Elastic Profiles

14

HMF-028 (Flattop-25 or Topsy)

Highly enriched (93 wt%) uranium sphere surrounded by a thick reflector of natural uranium.

k_{bench}=1.0000±0.0030

Topsy: Integrated Sensitivities (1/3)

	SERPENT	MONK ENDF	MONK JEFF	MCNP6
U235-capture	-4,79	-4,87	-4,82	-4,84
U235-n, 2n	0,11	0,12	0,12	0,12
U235-fission	57,37	57,17	57,32	57,41
U235-elastic	3,30	3,54	3,43	3,30
U235-inelastic	3,39	3,34	3,28	3,63
U235-nu-bar	91,56	90,10	90,88	91,53
U238-capture	-4,83	-4,74	-4,88	-4,90
U238-n, 2n	0,07	0,05	0,08	0,04
U238-fission	5,72	5,95	5,61	5,54
U238-elastic	14,54	14,43	14,65	14,07
U238-inelastic	6,12	6,24	6,36	6,28
U238-nu-bar	7,78	9,23	8,57	7,81

Topsy: Integrated Sensitivities (2/3)

IRSN

Topsy: Integrated Sensitivities (3/3)

IRSN

Topsy: Uncertainties by reactions

Topsy: U-235 Fission Profile

WPEC/Sg. 39 Meeting

Topsy: U-235 Capture Profile

WPEC/Sg. 39 Meeting

HMI-001 (ZPR 9/34 loading 303)

Highly enriched uranium/ iron benchmark, moderated, reflected by steel. RZ model

k_{bench}=0.9966±0.0026

⁵⁶Fe-tot sensitivity in core = 0.0785, in reflector = 0.0166(0.015)

Figure 12. Benchmark Model Geometry

ZPR-9/34: Integrates Sensitivities (1/3)

	SERPENT	MONK ENDF	MONK JEFF	MCNP6	SCALE 6.2	MCNP6 238 gr*
Cr52-capture	-0,53	-0,54	-0,52	-0,53	-0,52	-0,47
Cr52-elastic	2,76	2,91	2,40	3,04	3,26	2,22
Cr52-inelastic	0,05	0,09	0,03	0,04	0,08	0,04
Fe56-capture	-6,53	-5,95	-6,34	-7,11	-6,89	-6,75
Fe56-elastic	10,84	8,79	11,40	12,31	11,14	8,36
Fe56-inelastic	1,31	1,64	1,32	0,71	1,70	1,76
Ni58-capture	-0,78	-0,62	-0,64	-0,66	-0,77	-0,66
Ni58-elastic	2,47	2,51	2,75	1,66	2,55	0,90
Ni58-inelastic	0,02	0,01	0,03	0,07	0,02	-0,03
U235-capture	-14,45	-14,28	-14,42	-14,32	-14,54	-14,38
U235-n, 2n	0,01	0,01	0,01	0,02	0,01	0,00
U235-fission	51,83	50,79	51,82	52,54	51,85	52,29
U235-elastic	1,30	0,99	1,34	0,11	1,07	1,05
U235-inelastic	0,91	0,87	0,87	0,99	0,92	1,22
U235-nu-bar	99,71	99,42	99,04	99,72	99,71	99,71
U238-capture	-0,70	-0,68	-0,68	-0,69	-0,68	-0,67
U238-n, 2n	0,00	0,00	0,00	0,00	0,00	0,00
U238-fission	0,07	0,06	0,07	0,06	0,07	0,07
U238-elastic	0,41	0,36	0,39	0,23	0,39	0,41
U238-inelastic	0,01	0,02	-0,02	0,15	0,01	0,01
U238-nu-bar	0.11	0,08	0,12	0,10	0,11	0,11

ZPR-9/34: Integrates Sensitivities (2/3)

IRSN

ZPR-9/34: Integrates Sensitivities (3/3)

ZPR 9/34: Uncertainties by reactions

C/Sg. 39 Meeting

ZPR 9/34: U-235 Fission Profiles

ZPR 9/34: U-235 Capture Profiles

WPEC/Sg. 39 Meeting

ZPR 9/34: U-235 Inelastic Profiles

WPEC/Sg. 39 Meeting

29

PMI-002 (ZPR 6/10 loading 24)

Core with heterogeneous plutonium metal fuel with carbon/stainless steel dilutions, and a steel reflector.

 $k_{bench}=0.9862\pm0.0005 (k_{ZPR6/10}=1.0009\pm0.0007)$

ZPR 6/10: Integrated Sensitivities (1/3)

	SERPENT	MONK ENDF	MONK JEFF	MCNP6
Cr52-capture	-1,10	-1,06	-1,11	-0,99
Cr52-elastic	3,61	3,09	4,57	1,02
Cr52-inelastic	0,30	0,26	0,23	0,46
Fe56-capture	-4,39	-4,00	-4,45	-4,72
Fe56-elastic	9,33	7,24	10,34	10,11
Fe56-inelastic	1,69	1,72	1,99	2,46
Ni58-capture	-1,63	-1,37	-1,18	-0,98
Ni58-elastic	3,08	3,51	3,18	2,65
Ni58-inelastic	0,09	0,05	0,04	0,13
Pu239-capture	-19,42	-19,17	-19,58	-19,78
Pu239-n, 2n	0,01	0,00	0,01	0,01
Pu239-fission	56,78	57,41	56,82	56,81
Pu239-elastic	0,50	0,60	0,84	0,03
Pu239-inelastic	0,18	0,15	0,20	0,25
Pu239-nu-bar	98,91	96,80	97,98	98,93
Pu240-capture	-1,04	-1,14	-1,05	-1,05
Pu240-n, 2n	0,00	0,00	0,00	0,00
Pu240-fission	0,53	0,49	0,51	0,52
Pu240-elastic	0,05	0,11	0,10	0,28
Pu240-inelastic	0,00	0,04	0,03	0,01
Pu240-nu-bar	0,80	0,93	0,73	0,79
Pu241-capture	-0,03	-0,02	-0,03	-0,02
Pu241-n, 2n	0,00	0,00	0,00	0,00
Pu241-fission	0,14	0,14	0,15	0,14
Pu241-elastic	0,00	0,01	0,00	0,00
Pu241-inelastic	0,00	-0,01	0,00	0,01
Pu241-nu-bar	0,25	0,38	0,25	0,24

ZPR 6/10: Integrated Sensitivities (2/3)

ZPR 6/10: Integrated Sensitivities (3/3)

ZPR 6/10: Uncertainties by reactions

ZPR 6/10: Pu-239 Fission Profiles

WPEC/Sg. 39 Meeting

IRSN

ZPR 6/10: Pu-239 Capture Profiles

ZPR 6/10: Fe-56 Capture Profiles

WPEC/Sg. 39 Meeting

IRSN

ZPR 6/10: Fe-56 Elastic Profiles

Convergence Issues

Oscillations in sensitivity profiles (MCNP6 example) addressed

Optimization of sensitivity algorithms acceleration (CLUTCH example) - addressed

Negative n,2n contributions

Popsy: MCNP6 Convergence

MCNP6/ENDF/B-VII.1 5B histories (500000×10000) u-238 elastic (Results provided by B. Kiedrowski) inelastic

E. Tsvetkov EMPIRICAL TESTING OF SOME PSEUDO-RANDOM NUMBERS GENERATORS/ Mathematical Modeling, v 23, #5, pp.81-94, 2011

Empirical testing of statistical properties of some pseudo-random numbers generators based on a partition of the unit hypercube with dimension from 1 to 15 was performed. Some CLHEP library pseudorandom numbers generators, Mersenne Twister generator and MCNP generator were tested. The results of tests allowed to determine the parts of the pseudo-random numbers sequences with bad statistical properties. The easy recoverable defects of two CLHEP generators were found.

$$I = \lim_{n \to \infty} S_n, \qquad \mathbf{r}_1 = (x_1, x_2, \dots, x_k), \mathbf{r}_2 = (x_{K+1}, x_{K+2}, \dots, x_{K+k}), \dots,$$
$$S_n = \frac{V}{n} \sum_{i=1}^n f(\mathbf{r}_i), \qquad \mathbf{r}_n = (x_{(n-1)K+1}, x_{(n-1)K+2}, \dots, x_{(n-1)\cdot K+k}), \dots,$$
$$\chi^2 = \frac{1}{MX} \sum_{i=1}^{S^k} (X_i - MX)^2$$

E. Tsvetkov EMPIRICAL TESTING OF SOME PSEUDO-RANDOM NUMBERS GENERATORS/ Mathematical Modeling, v 23, #5, pp.81-94, 2011

	1	2	3	4	5	6	7	8	9	10
CLHEP::DualRand	0.995323	0.948053	0.340351	0.768940	0.987268	0.998447	0.947438	0.794921	0.865710	0.981127
CLHEP::HepJamesRandom	<u>1.000000</u>	0.699740	0.936632	0.966977	0.886762	0.928390	0.948037	0.874440	0.531962	0.831159
CLHEP::Hurd160Engine	0.981242	0.971623	0.958399	0.631339	0.863938	0.867428	0.974473	0.694394	0.906157	0.928675
CLHEP::Hurd288Engine	0.559912	0.792181	0.509890	0.757253	0.999971	0.976666	0.931154	0.994599	0.953089	0.946499
CLHEP::MTwistEngine	0.994270	0.946652	0.974972	0.899679	0.752039	0.944401	0.947856	0.951318	0.878380	0.871078
CLHEP::RanecuEngine	0.998975	0.996958	0.346334	0.709779	0.679632	0.900535	0.870693	0.705390	0.773634	0.619596
CLHEP::Ranlux64Engine	0.933658	0.874168	0.850137	0.974327	0.737928	0.960292	0.997410	0.917534	0.810551	0.990689
CLHEP::RanluxEngine	<u>1.000000</u>	0.642228	0.777547	0.841973	0.988477	0.908988	0.740307	0.493492	0.999962	0.937359
CLHEP::RanshiEngine	0.993416	0.707369	0.972229	0.910035	0.679360	0.921317	0.978640	0.977095	0.904776	0.934596
CLHEP::TripleRand	0.995091	0.398372	0.577427	0.993931	0.968364	0.962025	0.975680	0.988473	0.876030	0.983850
Matlab::twister	0.959231	0.702784	0.810525	0.569543	0.781814	0.982808	0.892043	0.864386	0.758089	0.882524
MersenneTwister	0.906981	0.939482	0.924331	0.906341	0.931654	0.652740	0.972370	0.123699	0.954542	0.881406
MCNP::rang	0.709312	0.000000	<u>1.000000</u>	0.000000	0.000000	0.000000	0.686396	0.000000	0.966349	<u>1.000000</u>
MCNP::rang, форм. (4), табл	0.887875	0.000000	<u>1.000000</u>	0.000000	0.000240	0.000170	0.716351	0.000000	0.447955	0.000460
МСNP∷rang, форм. (4), табл	0.992192	0.895684	0.405542	0.701091	0.956045	0.970338	0.554682	0.974754	0.997694	0.809440

Popsy: SCALE Convergence

Popsy: SCALE/CLUTCH Convergence

TSUNAMI-1D SCALE 6.2B IFP SCALE 6.2B CLUTCH

- U-238 inelastic
- U-238 inelastic
- U-238 inelastic no mesh inelastic mesh 1cm, 1M inelastic mesh 2cm, 100M

C.Perfetti/ ORNL

Notes on MC Sensitivity Theory

$$k_{ef} \cdot Q(\mathbf{r}) = \int Q(\mathbf{r}') \cdot P(\mathbf{r}' \to \mathbf{r}) \cdot d\mathbf{r}'$$

$$k_{ef}^{+} \cdot Q^{+}(\mathbf{r}) = \int Q^{+}(\mathbf{r}') \cdot P(\mathbf{r} \to \mathbf{r}') \cdot d\mathbf{r}'$$

$$k^+_{ef} = k_{ef}$$

$$P(\mathbf{r'} \rightarrow \mathbf{r})$$

is a number of particles appeared in the point *r* being born in fissions caused by neutron emitted in the point *r*'

ormally any infinitely derivable function can be taken instead of joint source density, but normalization factor might be unknown f it will be another spatially distributed function.

$$\left\langle \lambda_{i} \cdot \hat{\mathbf{F}} \cdot \vec{\Phi}_{j}, \vec{\Psi}_{j} \right\rangle = \left\langle \lambda_{j} \cdot \hat{\mathbf{F}}^{+} \cdot \vec{\Psi}_{j}, \vec{\Phi}_{i} \right\rangle = a_{i,j} \cdot \delta_{ij}$$

Note It has been proven that the bias of the of the sensitivity sampling estimator equals zero; e.g. asymptotical convergence of statistical integration to mathematical expectation exists. However there is no one theory to prove the rate of convergence - how many particles are needed to converge the sensitivities, as well there is no proven procedure to associate sampling dispersion with sensitivity profiles parameters.

$$\frac{\partial k_{ef}}{\partial \alpha} = \frac{\int \mathcal{Q}^{-}(\mathbf{r}) \cdot \mathcal{Q}(\mathbf{r}) \cdot \mathcal{Q}(\mathbf{r}) \cdot \partial \alpha}{\int \mathcal{Q}^{+}(\mathbf{r}) \cdot \mathcal{Q}(\mathbf{r}) \cdot d\mathbf{r}} \qquad \text{Formally} \\ \frac{\partial k_{ef}}{\partial \alpha} = \frac{\nabla \Sigma_{f}(\mathbf{r}, E)}{k_{a\phi} \Sigma_{a}(\mathbf{r}, E)} \mathcal{Q}^{+}(\mathbf{r}) \qquad \text{if it will formality} \\ \frac{\int E(x) \left\{ \frac{\Sigma_{a}(\mathbf{r}, E)}{v \Sigma_{f}(\mathbf{r}, E)} \Psi(x) \frac{\partial}{\partial \alpha} \left[\frac{v \Sigma_{f}(\mathbf{r}, E)}{\Sigma_{t}(\mathbf{r}, E)} \right] + \frac{\Sigma_{a}(\mathbf{r}, E)}{\Sigma_{t}(\mathbf{r}, E)} \frac{\partial}{\partial \alpha} \Psi(x) \right\}}{\int F(x) \frac{\Sigma_{a}(\mathbf{r}, E)}{\Sigma_{t}(\mathbf{r}, E)} \Psi(x) dx}$$

Popsy: Pu-239 Fission, MCNP6 238 gr. vs 33 gr.

ZPR9/34: Negative S_{n,2n} Example

MONK with JEFF MONK with ENDF SERPENT SCALE 6.2B

- U-238 n,2n reaction
- U-238 n,2n reaction
- U-238 n,2n reaction
- U-238 n,2n reaction

Zero level

IRSN

Summary and Conclusions

- Selected four physically complex benchmarks, sensitive to neutron albedo, enable to highlight angular related issues in sensitivity calculations, if any
- Collected results from 7 organizations that generated sensitivities using 8 codes/methods (6 MC codes and 3 deterministic SN codes)
- Good agreement between deterministic and all MC sensitivities is observed for nu-bar, fission, and capture profiles
- MC scattering sensitivities depends on statistical options
- In general, all tested MC methods and codes demonstrate consistency in the results that confirms the methods maturity

Other experimental data: SNEAK 7A β_{eff} uncertainties

IRSN