

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut Sandro Pelloni

Additional PSI adjustment studies accounting for nonlinearity

Focus on the French deterministic code system ERANOS and the associated data libraries which form a reference deterministic tool for fast –spectrum system calculations.

In addition to the original SG33 benchmark specifications:

Use of "best" ERANOS options to adjust system-oriented multi-group libraries (consisting of available cross-sections and variance/covariance data), specific to ERANOS.

These "best" options with respect to the benchmark (homogeneous cells):

-Slowing-down calculations: 1968 groups (subgroup method, probability tables) to get broad group cross- sections.

-Core simulations: P₁S₁₆ approximations (higher order anisotropic cross-sections not provided in 1968 groups), 33 groups. Enough accurate for sodium systems,

however: not always accurate for metallic fueled spheres, e.g. Flattop-Pu.

-Mesh thickness of less than 1mm in view of accurate calculations ($k_{direct} = k_{adjoint}$, proper convergence of generalized importance function) for

-Standard, Equivalent and Generalized Perturbation theory to obtain sensitivity coefficients for k_{eff} , reactivity effects and reaction rate ratios: Nuclear data uncertainty analysis, data adjustment.

Account for nonlinearity by means of iterative procedure : Repeated calculation of sensitivity coefficients with adjusted cross-sections; multiple, stepwise adjustment.

Analysis of benchmark and other experiments carried out in spherical, metallic fueled configurations using various approximations (JEFF-3.1 data)

Configuration	Integral	Experimental		Prior C/E			
	parameter	error (%)		(S ₁₆)			
				Anisotropic scattering			
			P ₁ ^a	P ₁ ^b	P ₃ ^b	P ₅ ^b	
Flattop-Pu	k _{eff}	0.300	0.980	0.982	0.999	1.001	0.999
	F28/F25	1.100	0.951	0.968	0.987	0.990	0.989
	F37/F25	1.400	0.993	1.003	1.014	1.015	1.014
Flattop-25	k_{eff}	0.100	0.987	0.988	1.000	1.000	0.999
	F28/F25	1.072	0.951	0.950	0.963	0.964	0.963
	F49/F25	0.867	0.984	0.984	0.986	0.986	0.986
	F37/F25	1.281	0.977	0.984	0.991	0.992	0.991
MIX-MET-	k _{eff}	0.160	0.987	0.988	0.998	0.998	0.996
FAST-001							
PU-MET-	k _{eff}	0.180	0.982	0.984	1.001	1.002	1.000
FAST-010							
PU-MET-	k _{eff}	0.270	0.971	0.991	1.008	1.008	1.006
FAST-009							
	k_{eff}	0.200	0.993	0.993	1.000	1.000	0.998
Jezebel-Pu239	F28/F25	1.100	0.956	0.974	0.984	0.984	0.984
	F49/F25	0.900	0.983	0.983	0.984	0.984	0.984
	F37/F25	1.400	0.990	1.000	1.004	1.004	1.004
Jezebel-Pu240	k _{eff}	0.200	0.997	0.997	1.004	1.004	1.002
	k _{eff}	0.100	0.991	0.992	0.997	0.997	0.995
Godiva	F28/F25	1.096	0.950	0.950	0.958	0.958	0.957
	F49/F25	0.989	0.979	0.980	0.981	0.981	0.981
	F37/F25	1.409	0.966	0.975	0.978	0.978	0.978

^aCalculations performed using standard 33 neutron broad group cross-sections.

^bCalculations performed on the basis of 175 neutron broad group cross-sections in the VITAMIN-J structure. ^cThe associated quadrature set to this S_{100} approximation corresponds to the P_{99} method.

k_{eff} for Flattop-Pu excluded from the adjustment: Thus 19 experiments considered:

Much more dependent on the use of more refined approximations as compared to the other experiments.

Larger orders of angular flux representation (than 16) and higher scattering cross-section anisotropies (than 1) needed.

Analytical modeling error ~2% >> Experimental error 0.3% would override nuclear data error and make experiment useless for adjustment.

The effect of using more than 33 groups appears in general less important.

S. Pelloni, "Application of an iterative methodology for cross-section and variance/covariance data adjustment to the analysis of fast spectrum systems accounting for non-linearity," Annals of Nuclear Energy, **72**, p. 373-390 (October 2014).

ERANOS Edition 2.2-N: JEFF-3.1/COMMARA-2.0 or ENDF/B-VI.8/BOLNA.

COMAC (JEFF based) would have been more suitable than COMMARA.

Format for variance/covariance data: AMERE, generated using simple reformatting in-house code.

Prior, before adjustment: i = 0.

Posterior, after adjustment: *i* = 1 (Linear approach), *i* > 1 (Nonlinearity).

Adjustment from Generalized Linear Least Squares (GLLS) in-house code using JAEA methodology.

Matrix inversion routine: AMARA code (Gandini) available from the NEADB.

GLLS: Reproduces ERANOS module SENSITIVITY_ANALYSIS (prior uncertainties with their decompositions): Additionally generates

- prior and posterior variance/covariance matrices of the analytical values of the integral parameters (Matrices U_i , Eqs (1)-(2)), guessed posterior C-values (Eq. 6, linear approximation) with their 1- σ uncertainties (Eq. (7)),
- minimum χ square,
- relative cross-section changes ΔT_i (Eqs 3-5) from adjustment, written on ASCII file \rightarrow MICADJ (currently no fission spectrum, no secondary distributions considered),
- posterior variance/covariance data in AMERE format for considered nuclides (based upon Eq. (8)).

MICADJ: Dedicated in-house ERANOS procedure

takes ERANOS microscopic cross-section set for each experiment (initially *i* = 0, prior, i.e. from ECCO) and updates this data using the ΔT_i s (Eq. (3)). Enables ERANOS to then assess posterior C-values (compared to GLLS: *exact, no linear approximation*) with their uncertainties and also posterior sensitivity coefficients.

i = 0: Prior values; i = 1: First iteration adjustment (Linear approach), i > 1: Nonlinearity.

- *G_i* : Sensitivity coefficient matrix: (from ERANOS, currently explicit coefficients),
- V_E : Experimental error correlation matrix,
- V_M : Analytical modeling error correlation matrix,

iteration independent

- M_i : Variance/covariance data matrix (M_0 : Square, symmetric. Prior data extracted from basic variance/covariance library for considered nuclides (GLLS)),
- N_i : Corresponding correlation data matrix (diagonal terms equal to 1, else between -1 and +1),
- T_i : Cross-section vector $(R_C(T_i))_k$: C-value of experiment k by using cross-sections T_i .

j-component of the vector ΔT_i in Eq. (3): relative xs difference from one adjustment to the next (Eq. (4)). *k*- component of the vector CE_i in Eq. (3): *k*th experiment E/C-1 value (Eq. (5)). $R_C(T_{i+1}) = R_C(T_i) + \tilde{G}_i(T_{i+1} - T_i)$ (6)

$$\widetilde{G}_{i} = dR_{c}(T_{i})/dT_{i}: \text{ Jacobian matrix easily deducible from } G_{i}.$$

$$\Delta (R_{C}(T_{i}))_{k} / (R_{C}(T_{i}))_{k} = \sqrt{U_{ik,k}} \quad (7)$$

$$N_{i+1} = N_{0} - N_{0}G_{i}^{T} (G_{i}N_{0}G_{i}^{T} + V_{E} + V_{M})^{-1}G_{i}N_{0} \quad (8)$$
Convergence of the second secon

onvergence reached when $\Delta T_{i,j} \rightarrow 0$ (*i* = 6 for SG33 benchmark): ERANOS results = GLLS results,

C/Es (JEFF-3.1/COMMARA-2.0)

			Prior	Posterior		Asymptotic posterior		
Configuration	Integral	(a)	ERANOS	ERANOS	GLLS	ERANOS	GLLS	s with
	parameter						(b)	(c)
L	k _{eff}	0.200	0.993	0.997	0.997	1.000	1.000	1.000
Jezebei-1 u237	F28/F25	1.100	0.956	0.991	0.991	1.013	1.013	1.003
	F49/F25	0.900	0.983	0.998	0.998	1.003	1.004	1.001
	F37/F25	1.400	0.990	1.007	1.007	1.011	1.010	1.003
Jezebel-Pu240	k _{eff}	0.200	0.997	1.000	1.001	1.000	1.000	1.000
Flattop-Pu	F28/F25	1.100	0.951	0.964	0.980	0.981	0.979	0.993
	F37/F25	1.400	0.993	0.999	1.008	0.999	0.999	1.004
700 (7	k _{eff}	0.251	1.003	1.004	1.002	0.999	1.001	1.001
ZPR0-/	F28/F25	3.173	0.965	0.989	0.991	1.009	1.009	1.005
	F49/F25	2.342	1.020	1.027	1.028	1.031	1.032	1.026
	C28/F25	2.614	1.004	1.011	1.011	1.004	1.005	1.006
ZPR6-7 Pu240	$k_{e\!f\!f}$	0.241	1.002	1.001	1.001	0.999	0.999	1.000
	k _{eff}	0.153	1.001	1.000	1.000	1.000	1.000	1.000
	F28/F25	2.875	0.962	0.988	0.988	1.009	1.009	1.003
7000	F49/F25	2.230	0.982	0.989	0.989	0.993	0.993	0.987
ZPPK9	C28/F25	2.141	0.996	1.003	1.003	0.997	0.997	0.998
	Na Void Step 3	4.188	1.059	1.045	1.045	1.031	1.031	1.028
	Na Void Step 5	4.113	1.002	0.990	0.990	0.979	0.978	0.980
JOYO	$k_{e\!f\!f}$	0.206	0.997	1.001	1.000	1.000	1.000	1.000

Prior values: k_{eff} : Over 3 σ -underestimation, Jezebel-Pu239 (in line with FLATTOP-Pu); Spectral indices: F28/F25 underestimated by 4 σ (nuclear data and methods issues). ZPPR9 Na Void Step 3: Overestimated by > 1 σ .

First adjustment: improves *C/Es*. More or less

within desired margin. Exception: k_{eff} Jezebel-Pu239 and F28/F25 Flattop-Pu. Somewhat larger differences between ERANOS and GLLS for Flattop-Pu spectral indices.

Asymptotic adjustment: differs from first adjustment. Additional improvements for the two deviating parameters and agreement between ERANOS and GLLS as expected. Simplified adjustment by GLLS: also consistent.

(a) Combination of experimental and calculation uncertainties of the prior C/Es (%).

(b) The sensitivity coefficients are taken from the corresponding ERANOS calculations.

(c) The prior sensitivity coefficients are used throughout without further use of ERANOS.

Data uncertainties (JEFF-3.1/COMMARA-2.0)

		Prior	Posterior	Asymptoti	c posterior
Configuration	Integral parameter	ERANOS	GLLS	ERANOS	GLLS
	k _{eff}	0.526	0.159	0.174	0.159
Jezebel-Pu239	F28/F25	2.345	0.770	0.622	0.761
	F49/F25	0.715	0.429	0.433	0.429
	F37/F25	1.656	0.629	0.512	0.625
Jezebel-Pu240	k _{eff}	0.587	0.178	0.189	0.177
Flattop-Pu	F28/F25	1.842	0.610	0.544	0.607
	F37/F25	1.372	0.598	0.540	0.600
	k _{eff}	0.972	0.136	0.195	0.138
ZPR6-7	F28/F25	6.484	1.609	1.637	1.617
	F49/F25	0.845	0.566	0.580	0.575
	C28/F25	1.496	0.941	0.933	0.953
ZPR6-7 Pu240	k _{eff}	0.973	0.137	0.187	0.137
	k _{eff}	1.203	0.136	0.179	0.136
	F28/F25	8.064	1.901	1.884	1.917
	F49/F25	0.881	0.560	0.571	0.568
ZPPR9	C28/F25	1.530	0.949	0.942	0.964
	Na Void Step 3	7.219	2.445	2.475	2.446
	Na Void Step 5	9.145	2.942	3.010	2.951
JOYO	k _{eff}	0.878	0.198	0.203	0.198

Adjustment: Smaller uncertainties consistent with other studies. Significant fraction of this reduction: cross-correlations. Correspondingly: Asymptotic posterior *C/Es* within or close within margin of combination of uncorrelated experimental, calculation and nuclear data caused uncertainties. More important: This margin reduced by adjustment.

Not as for the *C/Es*: Only marginal differences between first adjustment and asymptotic posterior values.

C/Es (ENDF/B-VI.8/BOLNA)

			Prior	Posterior		Asymptotic posterior		
Configuration	Integral	(a)	ERANOS	ERANOS	GLLS	ERANOS	GLLS v	vith
	parameter						(b)	(c)
	k_{eff}	0.200	0.990	0.995	0.996	1.000	1.000	0.999
Jezebel-Pu239	F28/F25	1.100	0.935	0.989	0.987	1.026	1.026	1.003
	F49/F25	0.900	0.972	0.997	0.997	1.008	1.008	1.003
	F37/F25	1.400	0.951	0.981	0.980	1.004	1.004	0.988
Jezebel-Pu240	k_{eff}	0.200	0.990	1.000	1.000	1.000	1.000	1.000
Flattop-Pu	F28/F25	1.100	0.940	0.967	0.981	0.961	0.968	0.995
	F37/F25	1.400	0.971	0.987	0.993	0.980	0.985	1.000
	k_{eff}	0.250	1.006	1.001	1.001	1.000	1.000	1.000
ZPR6-7	F28/F25	3.173	0.999	0.988	0.987	1.001	1.001	1.000
	F49/F25	2.342	1.029	1.039	1.039	1.036	1.036	1.033
	C28/F25	2.614	1.007	1.019	1.019	1.010	1.010	1.009
ZPR6-7 Pu240	k_{eff}	0.241	1.005	1.001	1.000	0.999	0.999	0.999
	k_{eff}	0.153	1.007	1.001	1.001	1.000	1.000	1.000
	F28/F25	2.875	1.013	0.988	0.987	1.010	1.010	0.999
	F49/F25	2.230	0.992	1.000	1.000	0.997	0.997	0.994
	C28/F25	2.141	0.999	1.012	1.012	1.002	1.002	1.002
ZPPR9	Na Void Step 3	3.843	1.152	1.050	1.048	1.024	1.024	1.024
	Na Void Step 5	3.679	1.134	1.014	1.011	0.986	0.986	0.984
JOYO	k _{eff}	0.206	0.992	1.001	1.000	1.000	1.000	1.000

Comparing with JEFF-3.1/COMMARA-2.0:

Prior, ENDFBVI/8, less accurate than JEFF-3.1: Particularly k_{eff} Jezebel-Pu240 and Na Void Step 5.

However, **asymptotic posterior close:** Difference < calculation+ experimental uncertainty.

This difference decreases from first adjustment to asymptotic.

(a) Combination of experimental and calculation uncertainties of the prior C/Es (%).

(b) The sensitivity coefficients are taken from the corresponding ERANOS calculations.

(c) The prior sensitivity coefficients are used throughout without further use of ERANOS.

		Prior	Posterior	Asymptotic posterior	
Configuration	Integral				
Configuration	parameter	ERANOS	GLLS	ERANOS	GLLS
	k _{eff}	0.645	0.165	0.178	0.166
Jezebel-	F28/F25	2.814	0.791	0.704	0.725
Pu239	F49/F25	0.771	0.451	0.432	0.430
	F37/F25	1.925	0.641	0.511	0.548
Jezebel-	k _{eff}	0.739	0.185	0.188	0.185
Pu240	-55				
Flattop-Pu	F28/F25	2.137	0.624	0.593	0.608
_	F37/F25	1.629	0.614	0.516	0.545
	k _{eff}	1.008	0.137	0.151	0.146
ZPR6-7	F28/F25	5.925	1.737	1.805	1.755
	F49/F25	0.826	0.573	0.586	0.585
	C28/F25	2.191	1.095	1.141	1.142
ZPR6-7	k _{eff}	1.018	0.148	0.158	0.154
Pu240	2,5				
	k _{eff}	1.180	0.137	0.136	0.137
	F28/F25	7.317	1.982	1.977	1.997
	F49/F25	0.877	0.583	0.597	0.597
	C28/F25	2.254	1.118	1.172	1.173
ZPPR9	Na Void Step	7.396	2.436	2.453	2.420
	3				
	Na Void Step	9.283	2.994	3.008	3.007
	5				
JOYO	k _{eff}	1.301	0.203	0.212	0.202

Prior:

Jezebel-Pu239, Jezebel-Pu240, Flattop-Pu, JOYO > JEFF-3.1/COMMARA-2.0: In line with larger deviations between *C*- and *E*-values. Also for k_{eff} ZPR6-7, ZPR6-7 Pu240, *C28/F25*, and sodium void reactivity. *F28/F25* and *F49/F25* in ZPR6-7 and ZPPR9 reversed trend.

Asymptotic posterior:

Similar to *C/Es*, consistent with JEFF-3.1/COMMARA-2.0, whereas prior values not. **Good** ! PAUL SCHERRER INSTITUT

Nonlinearity seen in sensitivity coefficient variations

PAUL SCHERRER INSTITUT

Configuration	Integral	Experimental	Prior	Asymptotic	Prior	Asymptotic
	parameter	error		Posterior	uncertainty	posterior
						uncertainty
		(%)	C/E	C/E	(%)	(%)
Flattop-Pu	$k_{e\!f\!f}$	0.300	0.980	1.007	0.904	0.349
	$k_{e\!f\!f}$	0.100	0.987	0.991	1.131	0.550
Flattop-25	F28/F25	1.072	0.951	0.971	1.971	1.611
	F49/F25	0.867	0.984	0.998	0.710	0.522
	F37/F25	1.281	0.977	0.975	1.544	1.257
MIX-MET-	k _{eff}	0.160	0.987	0.994	0.414	0.227
FAST-001						
PU-MET-	k _{eff}	0.180	0.982	0.989	1.077	0.345
FAST-010						
PU-MET-	k _{eff}	0.270	0.971	0.999	0.483	0.153
FAST-009						
	k _{eff}	0.100	0.991	0.993	0.890	0.567
Godiva	F28/F25	1.096	0.950	0.972	2.107	1.923
	F49/F25	0.989	0.979	0.995	0.718	0.550
	F37/F25	1.409	0.966	0.966	1.573	1.439

C/Es improvement systematic, particularly k_{eff} : Flattop-Pu and PU-MET-FAST-009.

F37/F25, marginally concerned: ²³⁷Np not adjusted.

²³⁵U fission cross-section adjustment from k_{eff} JOYO: Rather ineffective in fission source range of interest.

Uncertainty reduction as expected < benchmark particularly *F28/F25*: Low correlation with benchmark.

MIX-MET-FAST-001: Pu sphere surrounded by highly enriched U,PU-MET-FAST-010: Pu sphere surrounded by Al,PU-MET-FAST-009: δ -phase Pu sphere reflected by natural U.

Possible compensations: Methods deficiencies assimilated into artificial data changes ?

Conclusions

- Improvement by accounting for nonlinearity. However, stronger adjustments required (physical ?).
- Good performance of adjusted library, despite low number of integral parameters and reactions (19 and 6): Also satisfactory for other parameters e.g. Godiva and Flattop (however, methods and data deficiency mix ?).
- Different data bases (JEFF-3.1/COMMARA-2.0, ENDF/B-VI.8/BOLNA): Different prior results; Similar posterior results only if nonlinearity is accounted for (good !). However, adjusted cross-sections not always consistent.

To include:

• Stress tests: ZPR-9/34 (U/Fe, stainless steel reflector);

ZPR-3/53 (Pu/C/stainless steel assembly with U-blanket); ZPR-3/54 (Pu/C/stainless steel assembly with iron reflector); ZPR-6/10 (Pu/C/stainless steel assembly with stainless steel/iron reflectors):

Discrepancy between C- and E-values quite large; possibility of more important non-linear effects. Clearly, ¹²C and ⁵⁵Mn additionally to consider.

- Shielding/scattering experiments (secondary neutron distributions included in methodology).
- Target fast-spectrum reactors.

«SG33 members and especially their coordinators ; K. Mikityuk and A. Pautz (PSI) are acknowledged for their help in form of fruitful discussions.»

