

Americium 241 Criticality Safety Studies

Work Package 5, October 2014 Progress Report (for EGIEMAM-II)

Andrew Barnes, NNL

A Reminder of the Am241 Problem

Outline Solution and Future works

Industry, Stakeholder engagement and funding to October 2014 and beyond

NNL to separate kg quantities of Am241 from Magnox PuO2

NNL Application: heat/energy source as a Radioisotope Thermoelectric Generator (RTG) for space application (Space Battery)

Am241 market (other)

Where present IN ISOLATION in sufficient quantity and specific conditions Am241 (metal or oxide) will theoretically support criticality

It is therefore a legal requirement in the UK that Am241 be subject to CRITICALITY CONTROL

In most (but not all) cases if <15g then an exemption from criticality control can be granted

IAEA Regulations for transport contain no Am241 criticality limits yet

UK Regulator (ONR) has taken an Action (August 2014) to advise NNL/ESA as to how Am241 will be dealt with under IAEA Regulations

-(

Am241 – various nuclear data

NATIONAL NUCLEAR LABORATORY More Am241 specifics

The absence of any significant hydrogenous moderator is necessary for Am241 criticality

(H/Am241<1.25 approx)

HOWEVER

Carbon-12 "moderated" and reflected Am241 matrix (e.g. Space Battery) would support criticality if large enough

MASS control is the only really practical Criticality Control for Am241 for the systems and processes of interest

So we need to establish reliable safe (and operational) mass limits for Am241

Am241 – current mass limits

	Mass limit for safe operation	Moderator, Reflector or geometry limits	Status
Current limit for operations at NNL	Up to 100g Am241 in any form	None	Currently approved criticality limit for use in NNL Central Laboratory
Current limit for transport (ONR, IAEA Regulations)	Up to 15g Am241 in any form	None	The 15g exemption embedded in IAEA Regulations as adopted by ONR
Current (criticality) limit for Am241 in PCM wastes	"Natural" Am241 levels only	None	Wastes artificially enriched in Am241 will require case by case consideration as they may affect Pu assay

Am241 - target mass limits

	Indicated Mass limit for safe operation	Moderator, Reflector or geometry limits	Status
Single Batch limit for normal operations	1.0kg For Am241 in any metal or oxide form.	None, although heterogeneous systems need to be investigated to confirm simple sphere is worst case	Mass limit is indicative not proven for operations yet but likely to be supportable
Single package limit for transport	1.0kg for Am241 in any metal or oxide form.	As above	As above
Bulk storage limits	10.0kg for Am241 in any metal or oxide form.	Some engineered control may be required (storage racks) and some limitations on reflectors (by design)	As above

Am241 - target mass limits

	Indicated Mass limit for safe operation	Moderator, Reflector or geometry limits	Status
Final RTG assembly (assuming generic modular nominal 200g Am241/pellet design)	Up to 10.0kg Am241 in oxide form only based upon a worst case. Equivalent to a 50We RTG.	None other than the final assembled geometry will be credited to some extent in the justification and may allow >10.0kg	Mass limit is indicative not proven for operations yet but likely to be supportable

MONK9/JEF2.2 CRITICAL MASS

System modelled	Computer Code and Nuclear Data Library	Reflector	Critical Mass in kg
Am241 metal sphere	MONK9/JEF2.2	None	74
Am241 metal sphere	MONK9/JEF2.2	Full Water	67
Am241 metal sphere	MONK9/JEF2.2	Steel	44
Am241 metal sphere	MONK9/JEF2.2	30cm Carbon-12 (graphite)	44
Am241 metal sphere (13.0g/cm ³ density)	KENO ENDFB/VII.0 33 Energy Group	Carbon-12 (graphite)	53.5

UK SAFETY CRITERION

k-effective + 3 $\sigma \leq X - E_{PD} - E_{SM} - E_{R}$

X is the sub-critical limit

For simplicity 0.95 will be adopted.

SUB CRITICAL LIMITS

 E_{SM} is the allowance for error due to specification and modelling of the system being addressed. Since the basis of the Am241 reference values will be a worst case spherical geometry (or a specific detailed model) an E_{SM} of 0 can be applied.

 E_R is the allowance for the susceptibility of the system to increase in reactivity – an E_R of 0 is applied for the same reasons as above, a `worst case' will be used to determine Am241 parameters.

E_{PD} is the allowance for error due to the MONK program and the nuclear data used.

Currently there is no means of setting this value with any confidence for Am241 and again here lies the problem and the driver for remedial works.

This leads to a MONK criticality safety criterion for Am241 systems of:

k-effective + 3 $\sigma \leq 0.95 - E_{PD}$

where E_{PD} is simply unknown.

Many factors contribute to the uncertainty in Am241 critical mass is wide range of results but some key ones are:

- Lack of critical experiment
- Uncertainty in nuclear data
- Variations in nuclear data processing
 - Uncertainty in Am241 density
- Variations in code computational techniques

Critical experiments feed into nuclear data and give significant confidence in computer codes for U, Pu

No such confidence in Am241, no critical experiments, large uncertainties in nuclear data at the 'fast' end > 1.0Mev, lead to large (kg) uncertainties in critical mass

Critical experiments with Am241 not feasible

- . Fission cross section
- . Capture cross section
 - Nubar
 - Scattering
- . Fission energy spectrum
- Nuclear Data Processing

Figures from Ignatyuk et al

Outline Solution and Future Works

Most simplistically:

Justify a value for E_{pd}!

MONK9A with JEF 2.2 Nuclear Data is currently the UK combination of choice for new assessment.

Validated and Verified for U and Pu and mixed U/Pu systems

Am241 – not validated

- . Am241 metal
- . 13.67g/cm³ density
- . Spherical geometry
- . Various reflectors including steel and carbon-12
 - . MONK9/JEF2.2

SUMMARY FORWARD PLAN

- Understand, attribute and quantify the nuclear data uncertainties (or worst case)
 - Identify the best available nuclear data set for criticality safety assessment in light of these uncertainties
- Understand potential improvements to the nuclear data, including new integral experiments (via NEA Expert Group or otherwise)
- Specify and run (theoretical) Am241 benchmarks in support of improvement process.

SPECIFIC Work Programme

Task 1: understand, attribute and quantify the current Am241 nuclear data uncertainties (JEF2.2 and beyond, to date)

Task 2: understand/propose/justify the best available Am241 nuclear data set for criticality safety assessment in light of these uncertainties

Task 3: review/understand potential improvements to the proposed Am241 nuclear data set(s), including new integral experiments (via NEA Expert Group or otherwise)

Task 4: Develop, specify and run (theoretical) Am241 benchmarks in support of the improvement process (see Figure 1) - engage with NEA

Work Programme

Task 5: Based upon output of Tasks 1-4 propose suitable integral experiment programme through NEA/EGIEMAM to further improve nuclear data, if appropriate. Loop back.

Task 6: Based upon studies undertaken propose a nuclear data set suitable for use in a criticality safety case, quantifying its uncertainties, to feed into setting of suitable sub-critical margins

Task 7: Justify applicability of safe parameters (operations) to stakeholder groups (SL, ONR)

Task 8: Justify applicability of safe parameters (transport) to stakeholder groups (SL, IAEA, Dept of Transport)

The Nuclear Data improvement Cycle

Within these tasks specific technical consideration needs to be given to:

- Feeding in any improved data now available for Am241 fission and capture cross sections
 - Focussing on improved scattering data (or understanding worst case)
 - Better understanding energy spectra of prompt and delayed fission neutrons (or setting worst case)

Carbon-12 aeroshell (graphite) specification will significantly affect scatter

The effect of temperature needs to be investigated (Doppler effect)

Effect of other shielding materials (as reflectors) may need to be investigated

Understanding whether alpha/n reactions in AmO_2 are of significance

Separate out nuclear data uncertainties from uncertainties that are due entirely to different processing of the same nuclear data by different criticality codes

The assumption that unmoderated spheres represent worst case needs to be further supported

TECHNICAL AIMS

Recommend a nuclear data set for use in an operational safety case based upon the above and/or justify a value for E_{PD}.

Stakeholder and Industry engagement

NATIONAL NUCLEAR

European Space Agency

Sellafield Ltd

ONR

OECD / NEA

AWE Aldermaston

IAEA

National and International Experts on nuclear data and uncertainty / covariance analysis

The author would like to acknowledge ESA for funding this work

The work leading to part of this presentation has also received funding from within the NNL.

The presentation reflects only the author's view and the European Union or European Space Agency are not liable for any use that may be made of the information contained therein.

Within the NNL, the author acknowledges the work and support of M Erlund, J. Rendell, R. Mills, T. Tinsley and M. Sarsfield (all NNL)

NNL – some new calculations

END

SUPPORTING INFO ONLY FOLLOWS AND IN RANDOM ORDER

Existing literature and standards

The American National Standard for Special Actinides ANS8.15 gives some guide limits for Am241

Not robust enough to use in modern safety case (and our US colleagues and UK Regulator concur)

Various computer calculations undertaken by many with wide range of results

Critical Masses for Bare ²⁴¹Am Sphere in Literature

Density in g/cm3	Code	Nuclear Data Library	Critical Mass in kg	Density in g/cm3	Code	Nuclear Data Library	Critical Mass in kg
Metal, 13.6	MCNP4A	ENDL-83	54.4	Metal, 11.7	Dantsys	30 group; ENDF/B-VI	82.8
Metal, 11.7	MONK	UKNDL	56.4	Metal, 11.7	MCNP	JENDL 3.2	101.6+/-1.5
Metal, 13.66	MONK 8	UKNDL	56.4	Metal, 13.6	SCALE 4.3	ENDF/B-IV	102
Metal, 13.66	EMS?	ENDF/B- VI.2 DN	57.6	Metal, 13.6	MCNP4A	ENDF/B-V	108.3
Metal, 13.66	MCNP	ENDF/B-VI	57.7	Metal, 11.7	Dantsys	ABBN-93	122.5
Metal, 11.7	XSDRNPM	238 group; ENDF/B-VI	59.5	Metal, 11.7	Dantsys	Scale 4.4 44 group; ENDF/B-V	139.9
Metal, 11.7	XSDRNPM	199 group; ENDF/B-VI	60.0	Metal, 11.7	Dantsys	30 group; ENDF/B-V	145.3
Metal, 13.67	TRIPOLI	JEF 2.2	72.695	Metal, 11.7	MCNP	ENDF/B-V	147.9+/-2.0
	4.1			Metal, 13.6	SCALE 4.3	ENDF/B-IV	197
Metal, 13.66	MCNP	JEF 2.2	73.3	Oxide, 11.68	MCNP4A	ENDL-83	91.6
Metal, 13.66	MCNP	JENDL 3.2	73.7	Oxide, 11.69	MCNP	ENDF/B-VI	94.6
Metal, 13.6	MCNP4A	JENDL-3.2	74.8	Oxide, 11.69	MCNP	JEF 2.2	129
Metal, 13.67	APOLLO2	172 group, JEF 2.2	75.614	Oxide, 11.69	MCNP	JENDL 3.2	131
Metal, 13.66	MONK 8	JEF 2.2	75.7	Oxide, 11.68	MCNP4A	JENDL-3.2	135
Metal, 11.7	MONK	JEF 2.2	75.9	Oxide, 11.68	SCALE 4.3	ENDF/B-IV	199
Metal, 13.66	MONK 8	JENDL 3.2	76.1	Oxide, 11.68	MCNP4A	ENDF/B-V	207
Metal, 11.7	MCNP	ENDF/B-VI.2	78.5+/-0.9	Oxide, 11.68	SCALE 4.3	ENDF/B-IV	313

From Noijiri & Fukasaku; Brewer, Westfall and Clayton; Dias & Tancock; Lavarenne et al

ANS 8.15 Standard Values Based on FLATTOP Experiment

Subcritical Mass Limit (kg)

Table I Subcritical Mass Limits for Single Units Reflected by Infinitely Thick Water or Steel

Non-Fissile	Chemical	Water	Steel Reflector ^b		
Nuclide	Form	Reflector*			
²³⁷ Np	Np	30	20		
	NpO2	140	90		
²³⁸ Pu	Pu	4	3		
	PuO ₂	11	7		
²⁴⁰ Pu	Pu	20	15		
	PuO ₂	70	45		
²⁴² Pu	Pu	60	40		
²⁴¹ Am	Am	24	16		
	AmO ₂	40	32		
²⁴³ Am	Am	35	25		
	Am ₂ O ₃	50	37		
	AmO ₂	60	45		
³⁴⁴ Cm	Cm	5	3		
	Cm ₂ O ₃	7	5		
	CmO ₂	7	5		

*The mass limits for water reflectors may also be applied to combinations of steel and water (steel backed by water) for a steel thickness ≤ 1 cm.

^b The steel reflector thickness is 20 cm, i.e., effectively infinite.

NATIONAL NUCLEAR

NNL new calculations: current nuclear data comparison

NATIONAL NUCLEAR LABORATORY

Table 1: Critical radius and critical mass values for bare and water reflected Am²⁴¹ spheres.

Various Nuclear Data with KENO Nuclear Data Uncertainty

Preliminary results calculated using KENO with 33 energy group (53.5kg sphere 13g/cm3 density – INL)

NATIONAL NUC

Library	ENDF/B-VII.0	JEFF 2.2	ENDF/B-VI.8	JEFF 3.1
\mathbf{K}_{eff}	1.00035	1.00868	1.04679	1.04566

Library effect: Case of graphite reflector (9.94 cm Am-241 radius and graphite in outward region up to 30 cm radius).

Thanks are due to G.Palmiotti (INL) for these calculations