

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut Mathieu Hursin and Sandro Pelloni

PROTEUS FDWR-II (HCLWR) program summary for SG-39

Kern	p/d	V_M/V_F	Moderator	Eff. Moderation
7	1.12	0.48	H ₂ O	0.48
8	1.12	0.48	ohne	0.00
9	1.12	0.48	Dowtherm	0.28
10	1.12	0.48	Dowtherm	0.28
11	1.12	0.48	ohne	0.00
12	1.12	0.48	H ₂ O	0.48
13	1.26	0.95	H ₂ O	0.95
14	1.26	0.95	ohne	0.00
15	1.26	0.95	Dowtherm	0.55
16	1.26	0.95	H_2O	0.95
17	1.26	0.95	ohne	0.00
18	a)	2.07	H ₂ O	2.07
19	1.26	0.95	H ₂ O	0.95
20	1.26	0.95	D_2O	-

FDWR Phase II

•From 1985 to 1990 in PROTEUS reactor

•PROTEUS is a driven system whose test zone contains the FDWR lattices

- •UO₂/PuO₂ pellets with 11% PuO₂
- •Pu(8/9/0/1/2): 1%, 64%, 23%, 8%, 4%
- •Fuel diameter: 8.46mm
- •Fuel total height: 84 cm
- •2 axial blankets:

•Udep. 0.224w% ²³⁵U •28-cm high each

- •Several moderation conditions
 - •Two triangular pitches
 - Different moderators (water, downterm, air)

Core 7,8,9

Homogeneous (Vm/Vf = 0.48)
Water, air and downterm moderators
B₄C central pin and moderator hole
Axial MOX blanket interface in central pin

Core 10

Heterogeneous with water holes at the periphery and 37 B₄C absorber rods
Downterm (41.4% void)

Core 11, 12

•Heterogeneous with 55 B_4C absorber pins •Air und Wasser

Core 13,14,15

Homogeneous (Vm/Vf = 0.95)
Water, air and downterm moderators
B₄C central pin and moderator hole
Axial MOX blanket interface in central pin

Core 16, 17 •Heterogeneous with 61 B4C absorber pins (Vm/Vf = 0.95)

Core 18

•Heterogeneous with 60 B_4C absorber pins and 121 water holes (Vm/Vf = 2.07)

Heterogeneous with a 2:1 ratio of PuO₂/UO₂ and UO₂ 0.22w% pins (Vm/Vf = 0.95)
Water, air and downterm moderators
B₄C central pin and moderator hole
Axial MOX blanket interface in central pin

Core 20

- •Homogeneous
- •D₂O moderator
- •B₄C central pin and moderator hole
- •Axial MOX blanket interface in central pin

FDWR-II – Measurement types

Spectral index measurements (core 13 - ref)

- •F5/F9 ~0.72 F1/F9 ~ 1.50
- •F8/F9 ~0.89 C2/F9 ~ 0.94
- •C8/F9~5.1e-2
- •Typical uncertainties
- F5: 1.4%, F8: 2.0%, F9:1.4%, C8: 1.8%

Reaction rate radial and axial

traverses

Axiale Traverse durch MOX-Blanket Interface Folien (23.2.1988), normiert auf 1.0 bel 404 mm

FDWR-II – Measurement types

K∞ measurements

 $k_{\infty} = 1 + B^{2} \cdot M^{2}$ •Using axial and radial bucklings •Using compensation methods with auto-rod and a ²⁵²Cf sources

Reactivity effects of

- Void volume
- Moderator volume
- •Absorber rods

Absorber	Form	Durchmesser	Cladding	Bemerkung
B4C(nat)	Pellet	7.473	ja	Referenzabsorber
B4C(nat)	Pulver	7.430	ja	
B4C(93%) 10B	Pellet	7.430	ja	
Ag15In5Cd	Legierung	8.830	nein	
Hafnium	Metall	8.350	ja	
Gd_2O_3	Pellet	8.310	ja	
Sm_2O_3	Pellet	7.000	ja	
Tantal	Metall	8.290	ja	
Eu_2O_3	Pellet	8.243	ja	
Zircaloy-2	Legierung	8.300	nein	Strukturmaterial
Stahl	Metall	8.240	nein	Strukturmaterial

PSI

•Cell calculations: WIMSD4 with the WIMS-1981 data library

•Whole reactor calculations: ONEDANT (one dimension transport)

•Macroscopic cross-sections generation:

• WIMSD4 (P0 transport corrected) → DSNXSL → XSLIB

KfK

•Cell calculations: KAPER4 with the G69P1V02 data library (69 Groups)

•Whole reactor calculations: 2D DIXY2 diffusion and TWODANT transport codes

•Macroscopic cross-sections with transport corrected P0 and P1, S4

TUBS

•XS preparation: modified WIPRO, NJOY (ENDF/B-V, JEF-1), various DATUBS-nn

•Cell calculations: SPEKTRA (various libraries)

•Whole reactor calculations: DITUBS (2D diffusion, 35 groups)

Plans:

In addition to ERANOS, recalculation of these experiments by means of SERPENT-2.

Testing of the new built-in adjoint-weighting sensitivity coefficient methodology by investigating these reactivity effects. Detailed testing is currently undergoing for the sodium void in the framework of ESNI+ leading to promising results. GPT will be available in the next official release of the code (Manuele Aufiero).

Inclusion of SERPENT-2 based sensitivity coefficients and these experiments in data assimilation studies, e.g. the SG33 benchmark.

(Question: what should be used in multi-group cross-section adjustment studies, namely "complete" or explicit sensitivity coefficients ?)