Nuclear Data Parameter Adjustment BNL-INL

G. Palmiotti (presenter) S. Hoblit, M. Herman, G. P. A. Nobre, A. Palumbo, H. Hiruta, M. Salvatores

November 29, 2013

Introduction

- The major drawbacks of the classical adjustment method are related to the multigroup cross section approach. This implies several constraints:
 - *potential limitation of the domain of application of the adjusted data
 - fixed energy multigroup structure
 - dependence on the neutron spectrum used as weighting function and the code used to process the basic data file
- The classical statistical adjustment method can be improved by "adjusting" reaction model parameters rather than multigroup nuclear data.
- The objective is now to correlate the uncertainties of some basic parameters that characterize the neutron cross section description, to the discrepancy between calculation and experimental value for a large number of clean, high accuracy integral experiments.

Consistent adjustment (assimilation)

linking reaction theory and integral experiments

- Users often tune multi-group evaluated files to a certain type of integral experiments
- Such adjusted file is only valid for a specific application

Consistent adjustment (assimilation)

linking reaction theory and integral experiments

 Modern practice is to use nuclear reaction code constrained by experimental differential data to produce evaluations and covariances

Consistent adjustment (assimilation)

linking reaction theory and integral experiments

- Tuning is moved from multi-group file to reaction model parameters providing
 - evaluation constrained by differential and integral data and reaction theory

Consistent Data Assimilation

Linking integral experiments with reaction model parameters

Assimilation - consistent adjustment

Benefits

- Application independent (or less dependent) adjustment (no multi-group structure)
- Correlations (x-experiment, x-materials, x-reactions)
- Cohesion of integral and differential experiments and nuclear reaction theory
 - Better model parameters
 - More reliable (physics constrained) data

Requisites for assimilation

- Adequate set of reaction models
- Entire evaluation expressed in terms of model parameters
- Reaction model and its parameterization flexible enough to reproduce differential and integral data
- Clean, well defined, integral experiments possibly predominantly sensitive to a single material.

A few examples done up to now

- Investigate feasibility of the assimilation concept for priority materials
- ²³Na coolant
- ⁵⁶Fe structure material
- ¹⁰⁵Pd fission product
- ^{235,238}U, ²³⁹Pu major actinides
- ²⁴²Pu minor actinide
- Clean integral experiments available

- The Ispra sodium benchmark project was performed under the EURACOS (Enriched URAnium COnverter Source) irradiation facility.
- Measurements with activation detectors were carried out at distances from the source for ³²S(n,p) and ¹⁹⁷Au (n,γ) in order to analyze fast and epithermal neutron attenuations.

Assimilation of ²³Na

Idaho National Laboratory

JANUS-8 Sodium Propagation Experiment

- The JANUS Phase 8 experiments were performed at the ASPIS facility.
- The neutron attenuations of several different detectors were analyzed and in particular for the following reaction rates: ³²S(n,p)³²P, ¹⁰³Rh(n,n')¹⁰³mRh, ¹⁹⁷Au(n,γ)¹⁹⁸Au, and ⁵⁵Mn(n,γ)⁵⁶Mn.

Assimilation of ²³Na

Apparently excellent result but failed 'retrofitting test'

10⁺⁰ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁺⁰ Incident Neutron Energy (MeV)

Lesson learned

- non-linearity effects may distort the assimilation procedure and must be kept under control.
- cross section fluctuations represent a challenge (in ²³Na treated via energy dependent scaling factor)

 $10^{\pm1}$

Assimilation of ⁵⁶Fe

Hopeless resonance-like structure up to 8 MeV
Poor prior - better CC omp needed

C/E after assimilation of ⁵⁶Fe

Experim	ent	$C/E \pm \sigma$ (before)	$C/E \pm \sigma$ (after)
$^{10}\mathrm{B}(\mathrm{n},\alpha)$ slope	ZPR3-54	0.853 ± 0.030	1.012 ± 0.022
235 U(n,f) slope	ZPR3-54	0.907 ± 0.030	1.015 ± 0.013
239 Pu(n,f) slope	ZPR3-54	0.889 ± 0.030	0.996 ± 0.013
238 U(n,f) slope	ZPR3-54	1.455 ± 0.030	1.284 ± 0.014
$^{32}S(n,p)$ slope	EURACOS	0.879 ± 0.093	1.197 ± 0.055
$^{197}\mathrm{Au}(\mathrm{n},\gamma)$ slope	EURACOS	1.288 ± 0.098	1.054 ± 0.032
115 In(n,n') slope	EURACOS	0.327 ± 0.156	0.455 ± 0.042
103 Rh(n,n') slope	EURACOS	0.478 ± 0.071	0.511 ± 0.010

- Certain improvement achieved but VII.0 performs better
- Poor prior better CC omp needed

⁵⁶Fe lesson learned

- Integral experiments alone do not ensure restoring agreement with differential data if the prior is of poor quality.
- A practical, necessarily approximative, method should be developed for treating fine energy fluctuations that can't be treated in terms of the reaction theory
- Possible discrepancies among differential and integral experiments might make consistent assimilation difficult or impossible.

Assimilation of ¹⁰⁵Pd

Brookhaven Science Associates Sam Hoblit ND2013

NATIONAL LABORATOR

¹⁰⁵Pd - assimilation results

Assimilation concept worked! However, violence had to be done to the differential covariance matrix to fit integral data.

¹⁰⁵Pd - lesson learned

- If two parameters happen to be strongly anticorrelated assimilation may exploit this feature to drive both parameters beyond physical range.
- If assimilation is not possible without increasing properly defined prior uncertainties it either means that the model is not adequate or flexible enough, or that differential and integral experiments are inconsistent.

²³⁵U (1st round) - assimilated fission

²³⁵U (1st round) - lesson learned

- A single integral experiment can be successfully assimilated even with a poor prior.
 Here, k_{eff}=1 was obtained by scaling fission cross sections regardless of differential data.
- More integral experiments with diverse characteristics should help.

Assimilation of ²³⁹Pu (1st round)

JEZEBEL

Experiment	prior C/E $\pm~\sigma$	post C/E $\pm~\sigma$
$k_{ ext{eff}}$	0.9857 ± 0.002	09998 ± 0.002
Fis.238U/Fis.235U	0.9561 ± 0.009	0.9598 ± 0.002
Fis.239Pu/Fis.235U	0.9708 ± 0.020	0.9917 ± 0.003
Fis.237Np/Fis.235U	0.9988 ± 0.017	1.0010 ± 0.001
Fis.233U/Fis.235U	1.0003 ± 0.017	1.0002 ± 0.001

- Consistent improvement (except ²³⁸U/²³⁵U)
- VII.1 and assimilated file equivalent on k_{eff} but...

²³⁹Pu (1st round) - assimilated fission

²³⁹Pu (1st round) - assimilated parameters

Parameter	Variation (%)	Prior Std. Dev. (%)	Posterior Std. Dev. (%)
VA000 ^{<i>a</i>}	-0.141	0.134	0.121
FUSRED000 ^b	0.432	0.951	0.612
LDSHIF010 ^c	0.299	0.705	0.692
DELTAF000 ^d	-0.120	0.671	0.668
ATILNO010 ^e	-0.076	0.965	0.958
$VB000^{f}$	-0.079	0.480	0.479
ATLATF000 ^g	0.128	1.240	1.239
TOTRED000 ^h	-0.0831	0.918	0.815
HA000 ^{<i>i</i>}	-0.155	0.474	0.471

Assimilation distributed over several parameters

²³⁹Pu (1st round) - lesson learned

- Perfect agreement with integral parameter can be obtained without satisfactorily reproducing differential data.
- There is no substitute for a good prior!

Assimilation of ²³⁹Pu (2nd round)

- New version of EMPIRE with improved fission parametrization (M. Sin)
- Overall very good prior
- EMPIRE calculated PFNS included in assimilation
- 'Direct' assimilation on JEZEBEL keff using MCNP performed at BNL.

²³⁹Pu direct assimilated parameters

Parameter Name	pre-assimilation	post-assimilation
ATILNO-000	1.083	1.0851
ATILNO-001	0.907	0.9034
ATILNO-020	0.938	0.9380
ATILNO-030	0.988	0.9880
TUNEFI-010	0.833	0.8327
TUNE-000	2.228	2.2230
FUSRED-000	0.970	0.9700
RESNOR-000	1.320	1.3200
FISVF1-000	1.000	0.9995
FISVF1-010	1.000	1.0005
FISVF2-000	1.000	1.0042
FISVE1-000	1.000	0.9985
FISVE2-000	1.000	0.9995
FISHO1-000	1.000	0.9992
FISHO2-000	1.000	0.9992
FISAT1-000	0.917	0.9157
FISAT2-000	0.971	0.9717
FISAT2-010	0.981	0.9810
FISDL1-000	1.000	0.9999
FISDL2-000	1.000	0.9999
LDSHIF-000	1.100	1.0990
LDSHIF-010	1.063	1.0647
LDSHIF-020	0.917	0.9170
PFNALP-000	0.963	0.9613
PFNRAT-000	0.928	0.9279
PFNERE-000	0.999	1.0002
PFNTKE-000	0.984	0.9853

- The change required for assimilation is very small in comparison to the uncertainties of the experimental data sets.
- Tiny changes in the parameters are well within the prior uncertainties of the parameters

²³⁹Pu direct assimilation covariance matrix

	Parameter	1	2	3	5	6	7	9	10	11	12	13	14	16	17	18	20	23	24	26	34	37	38	46	47	48	50	51	52	53
1	ATILNO-000 ^a	100																												
2	ATILNO-010 ⁶	4	100																											
3	ATILNO-020 ^a	-2	0	100																										
5	TUNEFI-010 ^b	0	1	4	100																									
6	TUNEFI-000 ^b	-1	2	-1	0	100																								
7	TUNE-000 ^c	-19	-2	1	0	-1	100																							
9	TOTRED-000 ^d	0	0	0	0	0	0	100																						
10	FUSRED-000 ^d	0	0	0	0	0	0	-98	100																					
11	RESNOR-000 ^e	-5	15	-7	1	0	2	1	0	100																				
12	FISVF1-000 ^f	-3	47	-12	2	8	-3	0	0	17	100																			
13	FISVF1-010 ^f	-2	-13	22	-2	0	1	0	0	-47	-7	100																		
14	FISVF1-020	2	6	-21	-1	0	-1	0	0	0	0	-5	100																	
16	FISVF2-000 ^f	-13	-38	17	-3	12	4	0	0	-19	-67	6	3	100																
17	FISVF2-010 ^f	-2	-5	-21	19	-1	0	0	0	-2	-16	-26	2	22	100															
18	FISVF2-020 ^f	0	3	-24	-1	0	0	0	0	0	-2	1	-29	4	6	100														
20	FISVE1-000 ^g	-1	-2	0	0	-1	-1	0	0	0	17	0	0	9	0	0	100													
23	FISVE2-000 ⁹	-2	7	-2	0	-1	-1	0	0	0	0	0	0	18	-2	0	-1	100												
24	FISVE2-010 ⁹	0	0	5	-2	0	0	0	0	0	2	-1	0	-3	12	0	0	0	100											
26	FISHO1-000 ^h	4	3	1	0	2	1	-1	0	6	34	0	-2	3	0	0	1	2	0	100										
34	FISAT1-000 ⁴	-1	10	-3	1	-1	-1	0	0	1	3	-3	1	20	-4	0	-1	-2	0	-1	100									
37	FISAT2-000	-2	67	21	-3	-2	0	0	0	-4	-2	10	7	20	20	8	0	-4	-3	3	-3	100								
38	FISAT2-010 ⁱ	2	-1	37	-3	0	-1	0	0	4	7	-12	12	-10	17	17	0	1	-3	-1	2	-14	100				E			
46	LDSHIF-000 ^j	21	0	0	0	0	4	0	0	2	3	0	-1	2	0	0	0	1	0	-4	0	1	0	100			Г	11	VV	
47	LDSHIF-010 ^j	-9	-18	5	-1	-7	-1	1	0	-17	-13	-15	7	50	7	3	-10	-6	-1	11	-6	8	-2	2	100					
48	LDSHIF-020 ^j	0	1	1	-6	0	0	0	0	1	3	-5	-4	-3	30	-8	0	0	-3	0	0	-2	-1	0	-1	100				\mathbf{N}
50	PFNALP-000 ^k	0	-1	0	0	0	0	0	0	2	-1	1	-1	3	0	0	0	0	0	0	0	0	-1	0	0	- 0	100			
51	PFNRAT-000 ^k	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- (65	100		
52	PFNERE-000 ^k	-1	2	-1	0	0	1	0	0	-2	1	-1	1	-4	0	0	0	0	0	0	0	0	1	0	-1		-65	-1	100	
53	PFNTKE-000 ^k	-1	1	0	0	0	0	0	0	-2		-1	1	-4	0	0	0	0	0	0	0	.0	1	0	-1	- 0	-24	44	88	100
																														1
										1.3	441		~~			+:-					~ ~	-								
										L	IT	e	00	TE	ela	LIC	M	5 1	Je	W	ee	en.						-		
	DENIS and y and parameters										-																			
	r r ro anu x-sec parameters									HA	A																			

NATIONAL LABORATO

²³⁹Pu (2nd round) assimilated fission

²³⁹Pu (2nd round) - assimilated inelastic

²³⁹Pu (2nd round) - lesson learned

- Successful assimilations when starting with good prior
- Reduction of uncertainties in the model parameters and consequently also in the calculated integral result
- Little correlation between cross section & PFNS parameters

Assimilation priors for ²³⁵U and ²³⁸U (2nd round)

- Both standards reproduced within about 2% (standards uncertainties)
- 14 levels coupled in ²³⁸U calculations

Multi-isotope assimilation

• Combine multiple integral experiments with sensitivities to multiple materials. The resulting assimilation should satisfy both differential and integral experiments and provide important cross-material covariances.

Integral Exp	²³⁵ U	²³⁸ U	²³⁹ Pu
FLATTOP-239		Х	Х
FLATTOP-HEU	Х	Х	
JEZEBEL-239			X
GODIVA	Х		

 Preliminary results look promising – more work needed.

Conclusions

Assimilation pitfalls

- non-linearity
- fluctuations in cross sections
- selection of experimental data
- anti-correlations driving parameters out of physical range
- Assimilation prerequisites
 - realistic covariances and correlations among measurements
 - good physics/modeling resulting in good prior
 - realistic weighting of differential and integral experiments
 - variety of experiments probing different aspects
- Assimilation is feasible

Conclusions

Changes much smaller than experimental cross section or model uncertainties are sufficient for a good prior to reproduce integral measurements.

---- Thus ----

opurely differential data based evaluation is unlikely to reproduce integral experiment within its precision

- integral data are not sufficient to turn a bad prior into a good one
- only all experimental information combined with the state of the art modeling may provide a "right" answer

