Idaho National Laboratory

Giuseppe Palmiotti

Idaho National Laboratory

November 29, 2013

Summary

- Parameters that help select or eliminate experiments, and assessing adjustment.
- Cross section central values after adjustment: do we accept them?

The problem of compensations:

- * An example: ²³⁹Pu σ_{fis}
- Missing Reactions

Validation of Covariance Matrix:

- Standard deviations too small
- Correlations (among experiments, nuclear data) before and after adjustment. How can we exploit them?

Problems with negative eigenvalues in covariance matrix.

pledge for unified formalism in adjustment equations.

Parameters for Assessing Adjustments

- Adjustment Margin
- Experiment Merit
- Theoretical Adjustment Margin
- > IS (Ishikawa factor).
- ISC_i (Ishikawa factor modified for taking into account correlations).
- > Initial χ^2 and χ_i^2 experiment contribution to χ^2 .
- > Individual χ_i measured in sigmas (before and after adj.)
- > Diagonal χ_i measured in sigmas (before and after adj.)
- > $\Delta \chi_{i E}^{2}$ contribution to $[\chi^{2} \chi^{2}]$ after adjustment due to change of (E-C)/E.
- > $\Delta \chi_{i E}^{2}$ contribution to $[\chi^{2} \chi^{2}]$ after adjustment due to $\Delta \sigma_{i}$. The sum over all cross section and experiments is Cook's distance.

SG33 adjustment experiment starting values

#		NUCL. DATA UNC. N	MEAS.+CALC. UNC.	ABS [(E-C) /C]	ADJ. MARGIN	EXP. MERIT T	HEO. ADJ. MARG.
1	JEZ_PU9 KEFF	7.24413E-03	2.00808E-03	1.40020E-04	9.11220E-03	1.86806E-03	7.10411E-03
2	JEZ_PU9 F28/F25	3.74506E-02	1.42127E-02	2.35415E-02	2.81218E-02	-9.32878E-03	1.39091E-02
3	JEZ_PU9 F37/F25	2.38210E-02	1.43178E-02	1.31712E-02	2.49676E-02	1.14660E-03	1.06498E-02
4	JEZ PU9 F49/F25	8.20421E-03	9.48683E-03	2.53255E-02	-7.63450E-03	-1.58387E-02	-1.71213E-02
5	JEZ PUO KEFF	7.19275E-03	2.00808E-03	1.90036E-04	9.01080E-03	1.81805E-03	7.00271E-03
6	FLATTOP KEFF	7.84415E-03	3.02152E-03	9.69060E-04	9.89661E-03	2.05246E-03	6.87509E-03
7	FLATTOP F28/F25	3.11071E-02	1.86011E-02	1.81226E-02	3.15856E-02	4.78493E-04	1.29845E-02
8	FLATTOP F37/F25	2.04288E-02	1.43178E-02	4.41945E-03	3.03271E-02	9.89838E-03	1.60093E-02
9	ZPR6/7 KEFF	9.70254E-03	2.30426E-03	4.29815E-04	1.15770E-02	1.87444E-03	9.27272E-03
10	ZPR6/7 F28/F25	6.39405E-02	3.49857E-02	4.47984E-03	9.44463E-02	3.05059E-02	5.94606E-02
11	ZPR6/7 F49/F25	8.34445E-03	2.52389E-02	3.75597E-02	-3.97635E-03	-1.23208E-02	-2.92152E-02
12	ZPR6/7 C28/F25	1.51049E-02	2.68328E-02	9.70489E-03	3.22328E-02	1.71279E-02	5.40003E-03
13	ZPR6/7 PU40 KEFF	9.72626E-03	2.21097E-03	6.30397E-04	1.13068E-02	1.58058E-03	9.09586E-03
14	ZPPR9 KEFF	1.19240E-02	1.17154E-03	7.80609E-04	1.23149E-02	3.90929E-04	1.11433E-02
15	ZPPR9 F28/F25	7.89544E-02	2.91548E-02	2.98661E-02	7.82431E-02	-7.11358E-04	4.90883E-02
16	ZPPR9 F49/F25	8.68286E-03	2.11896E-02	1.95759E-02	1.02966E-02	1.61376E-03	-1.08930E-02
17	ZPPR9 C28/F25	1.54422E-02	1.99249E-02	9.21431E-03	2.61528E-02	1.07106E-02	6.22790E-03
18	ZPPR9 STEP3	7.56730E-02	7.73692E-02	1.88383E-02	1.34204E-01	5.85309E-02	5.68347E-02
19	ZPPR9 STEP5	9.74114E-02	7.54321E-02	2.75380E-02	1.45305E-01	4.78941E-02	6.98734E-02
20	JOYO KEFF	8.83953E-03	1.80898E-03	2.54647E-03	8.10204E-03	-7.37490E-04	6.29306E-03

Individual χ_i before SG33 adjustement

$$\chi_i = \frac{\left| R_{e,i} - R_{c,i} \left(\mathbf{T}_0 \right) \right|}{\sqrt{\mathbf{G}_i \mathbf{M} \mathbf{G}_i^t + V_{e,i} + V_{m,i}}}$$

 $\chi^2_{dia,i} \equiv \left(k_i - m_i\right)^2 C_{dd}^{\text{-1}}\left(i,i\right) \; .$

 \checkmark If GMG^t << Ve+Vm, T' \equiv T₀ and GM'G^t \equiv GMG^t

✓If GMG^t>>Ve+Vm, GM'G^t≒Ve+Vm

 \checkmark If GMG^t \rightleftharpoons Ve+Vm, GM'G^t \rightleftharpoons 1/2 × GMG^t

#		EXPERIMENT	INDIVIDUAL KHI	DIAGONAL KHI	IS FACTOR	ISC FACTOR
1	JEZ PU9 KEFF		0.019	0.070	3.607	3.607
2	JEZ PU9 F28/F25		0.588	1.781	2.635	2.550
3	JEZ PU9 F37/F25		0.474	0.983	1.664	1.327
4	JEZ PU9 F49/F25		2.019	2.917	0.865	0.542
5	JEZ PUO KEFF		0.025	0.095	3.582	3.582
6	FLATTOP KEFF		0.115	0.321	2.596	2.596
7	FLATTOP F28/F25		0.500	0.998	1.672	1.569
8	FLATTOP F37/F25		0.177	0.316	1.427	1.290
9	ZPR6/7 KEFF		0.043	0.196	4.211	2.211
10	ZPR6/7 F28/F25		0.061	0.137	1.828	1.947
11	ZPR6/7 F49/F25		1.413	1.639	0.331	0.162
12	ZPR6/7 C28/F25		0.315	0.396	0.563	0.647
13	ZPR6/7 PU40 KEF	F	0.063	0.299	4.399	2.562
14	ZPPR9 KEFF		0.065	0.728	10.178	9.799
15	ZPPR9 F28/F25		0.355	1.081	2.708	2.846
16	ZPPR9 F49/F25		0.855	1.000	0.410	0.160
17	ZPPR9 C28/F25		0.366	0.500	0.775	0.886
18	ZPPR9 STEP3		0.174	0.280	0.978	0.671
19	ZPPR9 STEP5		0.224	0.420	1.291	1.179
20	JOYO KEFF		0.282	1.408	4.886	4.886

5

χ^2 and its components before and after SG33 adjustment

STARTING KHI SQUARE BY COMPONENT

FINAL KHI SQUARE BY COMPONENT

			#	EXPERIMENT		KHI SQUARE	#	EXPERIMENT
		KHI	SQUARE					
1	JEZ PU9 F49/F25			0.320	1	JEZ PU9 F49/F25		0.241
2	ZPR6/7 F49/F25			0.147	2	ZPR6/7 F49/F25		0.129
3	JOYO KEFF			0.099	3	ZPPR9 F49/F25		0.034
4	JEZ PU9 F28/F25			0.083	4	ZPPR9 F28/F25		0.031
5	ZPPR9 F28/F25			0.053	5	ZPPR9 C28/F25		0.018
6	ZPPR9 F49/F25			0.047	6	JEZ PU9 F37/F25		-0.018
7	FLATTOP F28/F25			0.046	7	FLATTOP F28/F25		0.015
8	ZPPR9 KEFF			0.026	8	ZPR6/7 C28/F25		0.012
9	ZPPR9 C28/F25			0.025	9	JEZ PU9 F28/F25		0.012
10	ZPR6/7 C28/F25			0.017	10	JOYO KEFF		0.010
11	ZPPR9 STEP5			0.012	11	ZPPR9 STEP5		0.009
12	ZPPR9 STEP3			0.007	12	FLATTOP F37/F25		-0.008
13	FLATTOP KEFF			0.005	13	ZPPR9 STEP3		0.007
14	ZPR6/7 KEFF			0.004	14	ZPR6/7 F28/F25		0.005
15	ZPR6/7 F28/F25			0.003	15	ZPPR9 KEFF		-0.004
16	ZPR6/7 PU40 KEFF			0.002	16	FLATTOP KEFF		0.004
17	FLATTOP F37/F25			0.002	17	ZPR6/7 KEFF		0.003
18	JEZ PU9 F37/F25			0.001	18	ZPR6/7 PU40 KEFF		0.003
19	JEZ PUO KEFF			0.000	19	JEZ PU9 KEFF		0.000
20	JEZ_PU9 KEFF			0.000	20	JEZ_PU0 KEFF		-0.000
	TOTAL			0.898		TOTAL		0.505

Diagonal χ before and after SG33 adjustment

#	EXPERIMENT	BEFORE	AFTER	CHANGE
1	JOYO KEFF	1.408	0.315	-1.093
2	JEZ_PU9 F28/F25	1.781	1.238	-0.543
3	JEZ PU9 F49/F25	2.817	2.445	-0.371
4	ZPPR9 KEFF	0.728	0.410	-0.319
5	ZPPR9 F28/F25	1.081	0.845	-0.237
6	FLATTOP F28/F25	0.998	0.884	-0.114
7	FLATTOP KEFF	0.321	0.209	-0.111
8	JEZ_PU9_F37/F25	0.983	0.879	-0.104
9	ZPPR9 C28/F25	0.500	0.447	-0.053
10	JEZ PUO KEFF	0.095	0.042	-0.053
11	ZPPR9 STEP5	0.420	0.369	-0.051
12	ZPR6/7 F49/F25	1.639	1.591	-0.047
13	FLATTOP F37/F25	0.316	0.276	-0.040
14	ZPPR9 F49/F25	1.000	0.960	-0.040
15	JEZ PU9 KEFF	0.070	0.037	-0.033
16	ZPR6/7 C28/F25	0.396	0.372	-0.024
17	ZPR6/7 PU40 KEFF	0.299	0.275	-0.024
18	ZPR6/7 F28/F25	0.137	0.122	-0.016
19	ZPR6/7 KEFF	0.196	0.184	-0.013
20	ZPPR9 STEP3	0.280	0.271	-0.010

χ^2 variation for SG33 adj. (total -0.393)

 $\chi_{GSL}^{2} = (\vec{x} - \vec{x}_{m})^{T} M_{x}^{-1} (\vec{x} - \vec{x}_{m}) + (\vec{y} - \vec{t})^{T} M_{y}^{-1} (\vec{y} - \vec{t})$

|--|

KHI SQUARE VARIATION DUE TO NUCLEAR DATA CHANGE

#		EXPERIMENT	CONTRIBUTION	#		NUCLEAR	DATA		CONTRIBUTION
1	JOYO KEFF		-0.081	1	PU239	FISSION	GROUP	5	-0.010
2	JEZ PU9 F28/F25		-0.050	2	PU239	FISSION	GROUP	4	-0.007
з	ZPPR9 KEFF		-0.038	3	PU239	FISSION	GROUP	6	-0.006
4	JEZ PU9 F49/F25		-0.027	4	U235	FISSION	GROUP	5	-0.004
5	FLATTOP F28/F25		-0.025	5	PU239	FISSION	GROUP	7	-0.004
6	FLATTOP F37/F25		-0.024	6	U235	FISSION	GROUP	6	-0.004
7	JEZ PU9 F37/F25		-0.017	7	U235	FISSION	GROUP	4	-0.003
8	ZPPR9 F28/F25		-0.009	8	PU239	CAPTURE	GROUP	16	-0.003
9	ZPR6/7 F28/F25		-0.005	9	PU239	INELASTIC	GROUP	5	-0.003
10	ZPPR9 F49/F25		-0.004	10	PU239	CAPTURE	GROUP	17	-0.003
11	ZPR6/7 F49/F25		-0.003	11	PU239	INELASTIC	GROUP	4	-0.003
12	ZPPR9 C28/F25		-0.001	12	U235	FISSION	GROUP	7	-0.003
13	ZPR6/7 C28/F25		-0.001	13	PU239	FISSION	GROUP	3	-0.002
14	ZPPR9 STEP5		-0.001	14	PU239	CAPTURE	GROUP	15	-0.002
15	ZPR6/7 KEFF		0.001	15	PU239	FISSION	GROUP	8	-0.002
16	ZPR6/7 PU40 KEF	F	0.001	16	U235	FISSION	GROUP	8	-0.002
17	JEZ PUO KEFF		-0.000	17	PU239	CAPTURE	GROUP	14	-0.002
18	ZPPR9 STEP3		-0.000	18	PU239	INELASTIC	GROUP	3	-0.002
19	FLATTOP KEFF		-0.000	19	U235	FISSION	GROUP	3	-0.002
20	JEZ_PU9 KEFF		-0.000	20	U235	CAPTURE	GROUP	11	-0.002
	TOTAL		-0.285			TOTAL			-0.108

Cross section central values after adjustment: do we accept them?

- This problem appear often when there are large variations with respect to initial values
- Claim made after performing the ENDF/B-VII.0 adjustment: "Central values of (n,γ) for ²⁴²Cm and ²⁴⁴Cm, and for ¹⁰⁵Pd, ¹³³Cs, ¹⁵¹Sm, and ¹⁵³Eu needed most adjustment."
- > One can check consistency with other evaluated files
- Another check is against the associated standard deviation: How many sigmas we should allow?
- Problem can arise in energy ranges that were not the target of the adjustment, just because there is a large standard deviation associated to the cross section (and low sensitivity).
- Sometimes variations from nominal values go against trends observed in differential measurements
- > Other criteria we should adopt?

The Problem of Compensations, an Example: $^{239}\mbox{Pu}\ \sigma_{fis}$

> In COMMARA 2.0: average uncertainty ~0.5%

- Common believe among users is that it is too low
- Result: other cross sections are adjusted for compensating the lack of room in the ²³⁹Pu σ_{fis} uncertainty

> In COMAC: average uncertainty ~3%

- Common believe among users is that it is too high
- Result: the ²³⁹Pu σ_{fis} uncertainty absorbs adjustments that should be made on other cross sections

> We need a goldilocks approach

- How can we have a solid argument to support the user feeling with the evaluators?
- Is there a formal methodology that can be applied?

The Problem of Compensations: The Missing Reactions

- In COMMARA 2.0 there are several holes in terms of missing reactions for certain isotopes:
 - Fission spectra covariance matrices are present only for few isotopes: ^{238, 239, 240}Pu,
 - Anisotropic scattering (P₁ component) of σ_{elas} covariance matrices present only for two isotopes: ²³Na, ⁵⁶Fe
 - The secondary energy distribution for σ_{elas} and σ_{inelas} (multigroup transfer matrix) covariance is not present
- Result: the adjustment is compensating for the missing reactions
- We need to stimulate evaluators for providing the missing data in order to improve the adjustment results

The Problem of Validating Covariance Matrix

ENDF/B-VII.0 Adjustment: Major Contributors to χ^2 . (χ^2 =1.6315)

#	Experiment	(E-C)/C (%)	Contrib. to γ^2
1	PROFIL1 PU239 IN PU238 SAMPLE	-27.38	0.480
2	COSMO F51/F25	-8.19	0.107
3	PROFIL1 PD106 IN PD105 SAMPLE	17.92	0.093
4	GODIVA F28/F25	4.71	0.072
5	COSMO F48/F25	-6.76	0.063
6	ZPPR-10 CENTER ROD	-6.28	0.061
7	BIGTEN F49/F25	2.67	0.057
8	TRAPU2 CM243 BUILD UP	107.04	0.057
9	JEZ_PU239 PU239/U235	2.53	0.054
10	PROFIL1 PU240 IN PU239 SAMPLE	10.38	0.051
11	PROFIL1 AM243 IN PU242 SAMPLE	-5.66	0.048
12	BIGTEN F28/F25	5.60	0.046
13	PROFIL1 RU102 IN RU101 SAMPLE	-9.42	0.041
14	PROFIL1 PU238 IN PU239 SAMPLE	32.80	0.038
15	ZPR6/7 F9/F5	3.76	0.032
16	TRAPU2 PU238 BUILD UP	1.01	-0.031
17	PROFIL1 CS134 IN CS133 SAMPLE	13.77	0.029
18	PROFIL1 PU239 IN U238 SAMPLE	2.88	0.028
19	PROFIL1 PU238 IN AM241 SAMPLE	5.37	0.023
20	ZPPR-10 STEP2	-13.72	0.020

The Problem of Validating Covariance Matrix

***** WARNING: SOME UNPHYSICAL CHANGE IN NUCLEAR DATA AFTER ADJUSTMENT HAVE BEEN DETECTED *****

NUCL. DATA WITH UNPHYSICAL CHANGE

#		NU	CLEAR DAT	RELAT.	CHANGE	%	
1	PU238	CAPTURE	GROUP	3		-155.4	92
2	PU238	CAPTURE	GROUP	10		-108.0	38
3	PU238	CAPTURE	GROUP	16		-126.2	73
4	PU238	CAPTURE	GROUP	17		-111.5	24

The Problem of Validating Covariance Matrix

- Claim made after performing the ENDF/B-VII.0 adjustment:
 - Overall the adjustment is quite satisfactory, but some standard deviations are underestimated:
 - ²³⁸Pu, ²⁴¹Am, and ²⁴²Cm,
 - ²³⁸U (fission, capture, and inelastic),
 - ²³⁹Pu (fission, capture, and (n,2n),
 - ⁵⁶Fe and ²³Na (elastic, inelastic, capture)
- Besides some clear case as for ²³⁸Pu (discussed previously) this claim was based on observations (combination of sensitivity coefficients and starting uncertainties), common believes, and user feelings
- We need a formal methodology in order to make credible statements about validity of covariance matrix values

EXP. CORR. BASED ON INITIAL DATA (MEAS. + CALC.) EXP. CORR. BASED ON G MATRIX COVAR.

EXP. CORR. BASED ON INITIAL NUCL. DATA COVAR. EXP. CORR. BASED ON ADJUST. NUCL. DATA COVAR.

EXPERIMENTS AND NUCL. DATA CORREL. BEFORE EXPERIMENTS AND NUCL. DATA CORREL. AFTER

Nuclear Data Correlation Before Adjustment

Nuclear Data Correlation After Adjustment

ABR Ox. K_{eff} Uncertainty (pcm)

COMMARA 2.0

Isotope	σ _{cap}	$\sigma_{\rm fiss}$	v	σ_{el}	σ _{inel}	χ	P ₁ ^{el}	Total
U238	278	29	112	105	547	0	0	633
PU239	308	223	71	30	79	161	0	428
FE56	170	0	0	172	147	0	44	287
PU240	61	45	82	5	17	24	0	116
NA23	4	0	0	20	80	0	69	107
CR52	21	0	0	38	18	0	0	47
016	5	0	0	45	2	0	0	46
PU241	10	7	3	0	2	0	0	13
Total	453	229	156	213	578	163	82	834

ADJUSTED No New Correl.

Isotope	σ _{cap}	$\sigma_{\rm fiss}$	v	σ_{el}	σ _{inel}	χ	₽1 ^{el}	Total
U238	128	29	91	23	62	0	0	173
PU239	71	149	70	16	37	93	0	206
FE56	141	0	0	138	97	0	44	224
PU240	19	32	62	4	16	23	0	78
NA23	4	0	0	19	59	0	59	86
CR52	21	0	0	38	18	0	0	46
O16	5	0	0	40	2	0	0	41
PU241	2	7	4	0	2	0	0	8
Total	205	156	130	153	136	96	74	374

ADJUSTED Full Correl.

Isotope	σ _{cap}	$\sigma_{\rm fiss}$	v	σ _{el}	σ_{inel}	χ	P ₁ ^{el}	Total
U238	-56	-12	-17	-20	-43	0	0	-76
PU239	37	43	17	4	7	-30	0	52
FE56	92	0	0	100	41	0	33	146
PU240	11	14	23	3	11	11	0	33
NA23	5	0	0	-9	-12	0	-34	-37
CR52	7	0	0	15	-11	0	0	12
016	5	0	0	49	2	0	0	49
PU241	-1	6	4	0	2	0	0	7
Total	84	44	22	111	-15	-28	-10	143

ABR Ox. Recycled K_{eff} Uncertainty (pcm)

COMMARA 2.0

Isotope	σ _{cap}	$\sigma_{\rm fiss}$	v	σ_{el}	σ _{inel}	χ	₽₁ ^{el}	Total
U238	219	28	104	105	707	0	0	756
PU240	180	162	292	19	77	121	0	406
FE56	155	0	0	153	211	0	46	307
CM245	5	282	37	0	1	0	0	285
PU239	200	168	52	22	79	151	0	317
CM244	107	76	60	1	3	0	0	145
PU242	119	50	42	3	9	0	0	136
NA23	5	0	0	30	121	0	66	142
PU238	62	74	64	3	13	3	0	117
PU241	63	44	25	1	18	0	0	83
Total	422	388	332	191	756	194	81	1045

ADJUSTED No New Correl.

Isotope	σ _{cap}	$\sigma_{\rm fiss}$	v	σ_{el}	σ_{inel}	χ	P ₁ ^{el}	Total
U238	102	27	85	20	75	0	0	156
PU240	53	115	220	18	74	114	0	288
FE56	120	0	0	121	150	0	45	232
CM245	5	276	37	0	1	0	0	278
PU239	43	113	51	12	36	89	0	163
CM244	24	76	60	1	3	0	0	100
PU242	16	26	42	3	9	0	0	52
NA23	6	0	0	25	90	0	57	110
PU238	16	53	64	3	13	3	0	86
PU241	12	44	25	1	18	0	0	55
Total	175	338	264	127	209	145	73	548

ADJUSTED Full Correl.

Isotope	σ _{cap}	$\sigma_{\rm fiss}$	v	σ_{el}	σ_{inel}	χ	P ₁ ^{el}	Total
U238	-47	-12	20	-18	-45	0	0	-66
PU240	45	74	182	20	83	80	0	233
FE56	75	0	0	84	105	0	34	158
CM245	6	264	37	0	1	0	0	267
PU239	27	-67	-24	-5	-13	-70	0	-97
CM244	-74	74	60	1	3	0	0	61
PU242	15	21	42	3	9	0	0	50
NA23	5	0	0	16	40	0	-47	-18
PU238	18	54	64	3	13	3	0	86
PU241	13	42	25	1	22	0	0	56
Total	37	285	210	86	134	39	-33	391

Problems with negative eigenvalues in covariance matrix

- If covariance matrix has zero and/or negative eigenvalues (mostly due to truncations) there are problems:
 - Difficulty in inverting matrices (both original and adjustment one)
 - Many multiplications leads to unphysical values (imaginary values of cross section standard deviations)
- Problem found in big adjustment where 75 zero or negative eigenvalues found (1126 cross sections):
 - Impossible to invert the initial covariance matrix
 - Imaginary values for standard deviations of 7 cross sections (elastic and inelastic ²³⁵U)

Possible remedies:

- Multiply by a factor all correlations. We had to use 0.8 factor that affects significantly results.
- Recalculate matrix by replacing with positive eigenvalues: B=VT'V⁻¹. Slight impact on results.
- Under study: identification of responsible of negative values through kernel of eigenvalues, then apply factor only to identified cross sections. National Laboratory

A pledge for unified formalism in adjustment equations

- Cross Sections: x, T, σ ->
- The Measured and Calculated Values of Experiments: E and C, R_e and R_c, y and t ->
- The Sensitivity Array: S, G ->
- The Experiment Covariance Matrix (from measurement and calculation): V (V_e, V_m), P (P_e, P_c), M_y, D_y ->
- > The Nuclear Data Covariance Matrix: B, C, D, M ->
- > Chi square: R, χ^2 , J ->

