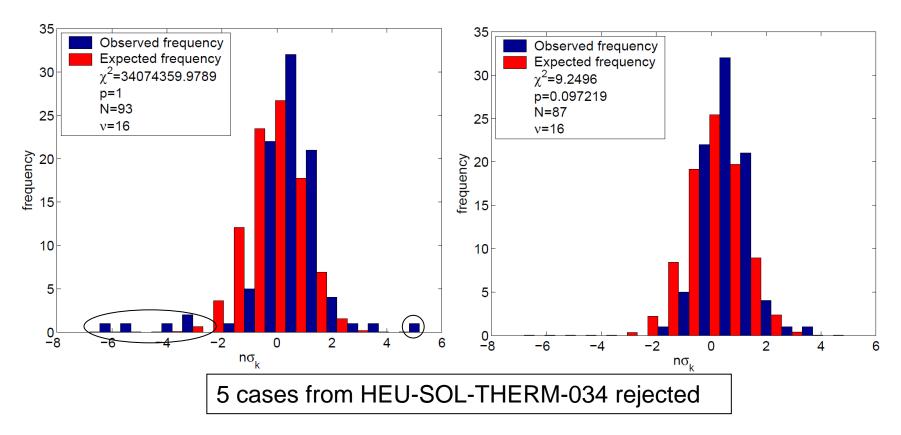


WPEC Subgroup 39 28<sup>th</sup> – 29<sup>th</sup> November 2013 OECD/NEA Paris

#### Data Assimilation of Benchmark Experiments for Homogenous Thermal / Epithermal Uranium Systems

James Dyrda Criticality Safety Group, AWE james.dyrda@awe.co.uk

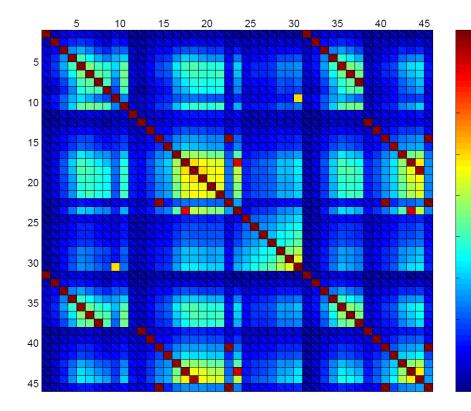



# Identification of Similar Benchmark Experiments to new UK IEU Evaluations

| Evaluation Identifier | Evaluation Title                                                                                    | Fuel form                                         | No.   |
|-----------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|-------|
| (Cross-references)    |                                                                                                     |                                                   | cases |
| LEU-SOL-THERM-001     | Unreflected UO <sub>2</sub> F <sub>2</sub> +H <sub>2</sub> O Cylindrical Assembly SHEBA-II          | Uranyl Fluoride (5% <sup>235</sup> U)             | 1     |
| LEU-SOL-THERM-002     | 174 Liter Spheres of Low Enriched (4.9%) Uranium Oxyfluoride Solutions                              | Uranyl Fluoride (4.9% <sup>235</sup> U)           | 3     |
| IEU-SOL-THERM-002     | Bare & Water Reflected Spheres/Hemispheres of Aqueous Uranyl Fluoride Solutions                     | Uranyl Fluoride (30.45% <sup>235</sup> Ú)         | 13    |
| IEU-SOL-THERM-003     | Bare & Water Reflected Cylinders of Aqueous Uranyl Fluoride Solutions                               | Uranyl Fluoride $(30.3\% 235 \text{U})$           | 46    |
| HEU-SOL-THERM-009     | Water Reflected 6.4-Liter Sphere of Enriched Uranium Oxyfluoride Solutions                          | Uranyl Fluoride (93.18% <sup>235</sup> U)         | 4     |
| HEU-SOL-THERM-010     | Water Reflected 9.7-Liter Sphere of Enriched Uranium Oxyfluoride Solutions                          | Uranyl Fluoride (93.18% <sup>235</sup> U)         | 4     |
| HEU-SOL-THERM-011     | Water Reflected 17-Liter Sphere of Enriched Uranium Oxyfluoride Solutions                           | Uranyl Fluoride (93.18% <sup>235</sup> U)         | 2     |
| HEU-SOL-THERM-012     | Water Reflected 91-Liter Sphere of Enriched Uranium Oxyfluoride Solutions                           | Uranyl Fluoride (93.18% <sup>235</sup> U)         | 1     |
| HEU-SOL-THERM-034     | Water-Moderated and -Reflected Slabs of Uranium Oxyfluoride                                         | Uranyl Fluoride (93.2% <sup>235</sup> U)          | 5     |
| HEU-SOL-THERM-043     | Large Unreflected Spheres of Uranium Oxyfluoride Solutions                                          | Uranyl Fluoride (93.13% <sup>235</sup> U)         | 3     |
| HEU-SOL-THERM-050     | Unreflected Aluminium Containing Uranyl Fluoride Solutions                                          | Uranyl Fluoride (93.2% <sup>235</sup> U)          | 11    |
| LEU-COMP-THERM-045    | Plexiglas or Concrete-Reflected $U(4.46)3O8$ with $H/U=0.77$                                        | Uranium Oxide (4.46% <sup>235</sup> U)            | 21    |
|                       | and Interstitial Moderation                                                                         |                                                   |       |
| LEU-COMP-THERM-049    | Maracas Programme: Polythene-Reflected Critical Configurations                                      | Uranium Oxide (5% <sup>235</sup> U)               | 18    |
|                       | with Low-Enriched and Low-Moderated Uranium Dioxide Powder $U(5)O_2$                                |                                                   |       |
| LEU-COMP-THERM-069    | Plexiglas Reflected U(4.48)3O8 with H/U=1.25 or H/U=2.03                                            | Uranium Oxide (4.48% <sup>235</sup> U)            | 5     |
|                       | and Interstitial Moderation                                                                         |                                                   |       |
| IEU-COMP-THERM-015    | Single Cores of 30.14% <sup>235</sup> U Enriched UO <sub>2</sub> -Wax Mixtures                      | Uranium Oxide (30.14% <sup>235</sup> U)           | 32    |
| (IEU-COMP-INTER-006)  | Bare and with Single Reflector Materials                                                            |                                                   | (1)   |
| (IEU-COMP-MIXED-004)  |                                                                                                     |                                                   | (6)   |
| IEU-COMP-THERM-016    | Single Cores of $30.14\%$ <sup>235</sup> U Enriched UO <sub>2</sub> -Wax Mixtures                   | Uranium Oxide (30.14% <sup>235</sup> U)           | 45    |
|                       | with Composite Reflector Materials                                                                  |                                                   |       |
| HEU-COMP-MIXED-001    | Arrays of Cans of Highly Enriched Uranium Dioxide Reflected by Polyethylene                         | Uranium Oxide (93.15% <sup>235</sup> U)           | 26    |
| (HEU-COMP-THERM-001)  |                                                                                                     |                                                   | (6)   |
| LEU-COMP-THERM-033    | Reflected and Unreflected Assemblies of 2 and 3 %-Enriched                                          | Uranium Tetrafluoride (2–3% <sup>235</sup> U)     | 52    |
|                       | Uranium Fluoride in Paraffin                                                                        |                                                   |       |
| IEU-COMP-INTER-003    | Unreflected UF <sub>4</sub> -CF <sub>2</sub> Blocks with $37.5\%$ <sup>235</sup> U                  | Uranium Tetrafluoride (37.5% <sup>235</sup> U)    | 14    |
| (IEU-COMP-THERM-011)  |                                                                                                     |                                                   | (2)   |
| (IEU-COMP-MIXED-003)  |                                                                                                     |                                                   | (3)   |
| IEU-COMP-MIXED-002    | Unreflected UF <sub>4</sub> -CF <sub>2</sub> Blocks with 30, 25, 18.8 and $12.5\%$ <sup>235</sup> U | Uranium Tetrafluoride (12.5–30% <sup>235</sup> U) | 9     |
| (IEU-COMP-INTER-004)  |                                                                                                     |                                                   | (2)   |
| IEU-COMP-THERM-001    | Critical Arrays of Polyethylene-Moderated $U(30)F_4$ -Polytetrafluoroethylene                       | Uranium Tetrafluoride (30% <sup>235</sup> U)      | 29    |
| (IEU-COMP-MIXED-001)  | One-Inch Cubes                                                                                      |                                                   | (4)   |



## **Rejection of Evaluations**


Uranyl-fluoride solution configurations





### **Experimental Covariance & Correlation**

Correlations for IEU-SOL-THERM-002 (46 cases)

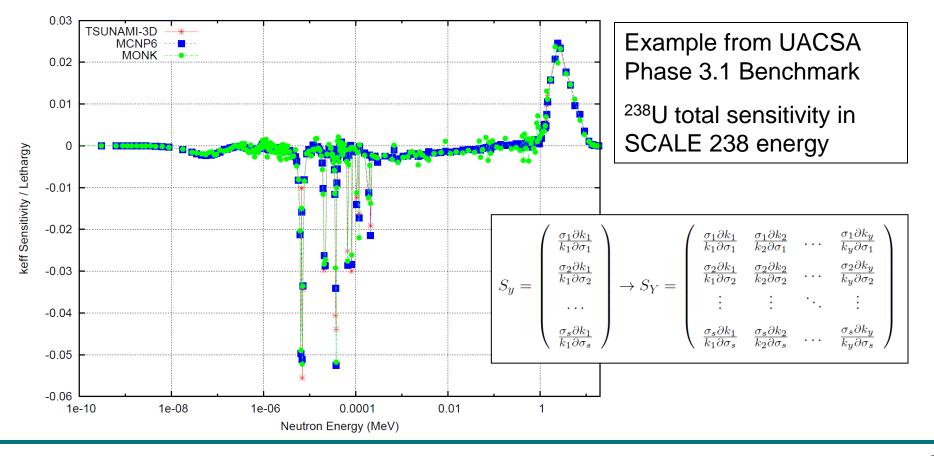


0.9  

$$cov\{xy\} = \delta k_x \delta k_y \rho_{x,y} = \sum_{i=1}^n \delta k_{i,x} \delta k_{i,y} (u_s + u_r \gamma_i^{x,y})$$
0.8

Cases with identical solutions have
 highly correlated solution
 measurement uncertainties

Concentration uncertainty

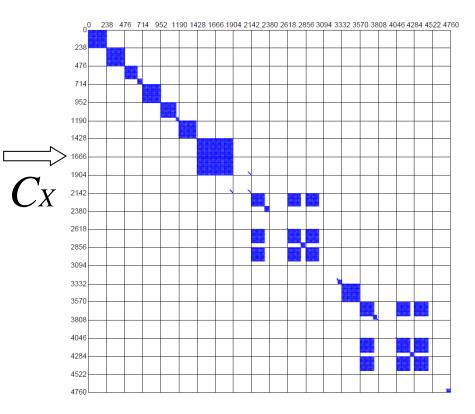

<sup>0.4</sup> dominates total therefore high
 <sup>0.3</sup> overall correlation

$$\sim C_Y$$



## Sensitivity Data (MONK9 – ENDF/B-VII.0)

MONK uses a DOS Monte Carlo method

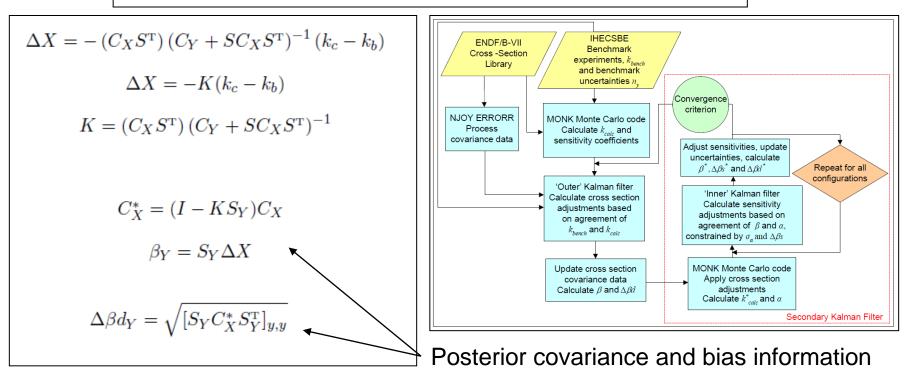





## **ENDF/B-VII.1 Covariances**

#### Dominant 20 reactions available were included

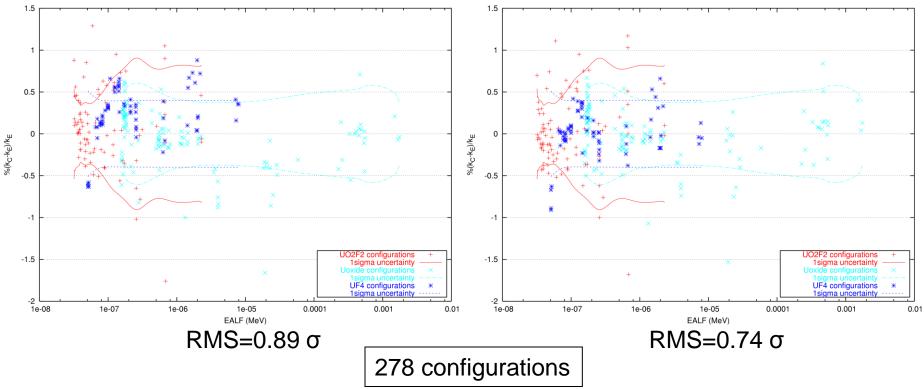
| Nuclide-reaction/energy $(s)$ | Nuclide-reaction                     |
|-------------------------------|--------------------------------------|
| 1-238                         | $^{1}\mathrm{H}(\mathrm{n},\gamma)$  |
| 239-476                       | $^{1}\mathrm{H}(\mathrm{n,elastic})$ |
| 477-714                       | $\mathrm{C}(\mathrm{n},\gamma)$      |
| 715–952                       | C(n,elastic)                         |
| 953–1190                      | $^{16}O(n,\gamma)$                   |
| 1191-1428                     | $^{16}O(n, elastic)$                 |
| 1429 - 1666                   | $^{19}\mathrm{F}(\mathrm{n},\gamma)$ |
| 1667-1904                     | $^{19}F(n,elastic)$                  |
| 1905-2142                     | $^{19}F(n,inelastic)$                |
| 2143-2380                     | $^{235}$ U(n, $\gamma$ )             |
| 2381-2618                     | $^{235}U(n,2n)$                      |
| 2619-2856                     | $^{235}U(n,F)$                       |
| 2857-3094                     | $^{235}$ U(n,elastic)                |
| 3095-3332                     | <sup>235</sup> U(n,inelastic)        |
| 3333-3570                     | $^{235}\mathrm{U}(\bar{\nu})$        |
| 3571-3808                     | $^{238}$ U(n, $\gamma$ )             |
| 3809-4046                     | $^{238}U(n,2n)$                      |
| 4047-4284                     | $^{238}U(n,F)$                       |
| 4285-4522                     | $^{238}$ U(n,elastic)                |
| 4523-4760                     | $^{238}$ U(n,inelastic)              |





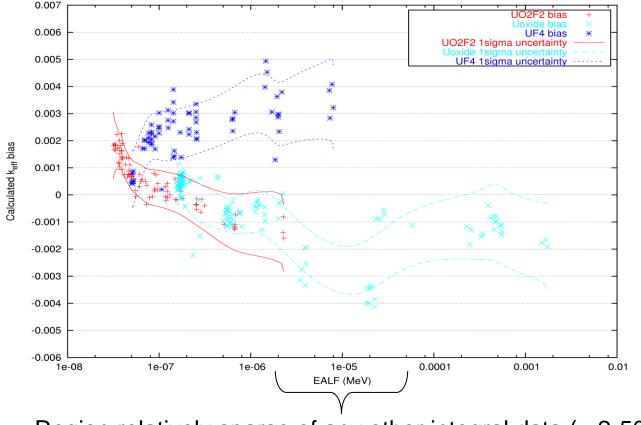

## **Kalman Filter Equations**

#### Minimisation of a combined error cost function


 $F^2 = (\Delta X)C_X^{-1}(\Delta X)^{\mathrm{T}} + (k_c + S\Delta X - k_b)C_Y^{-1}(k_c + S\Delta X - k_b)^{\mathrm{T}}$ 



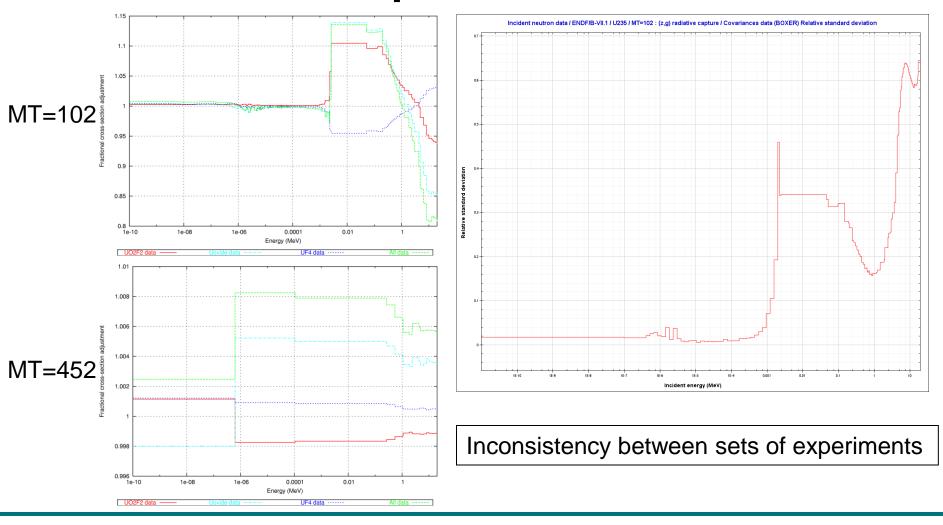



# Improvement in (C-E)/E Distribution

- Reduction in RMS (*nσ*) deviation about 0
  - All cross section adjustments propagated

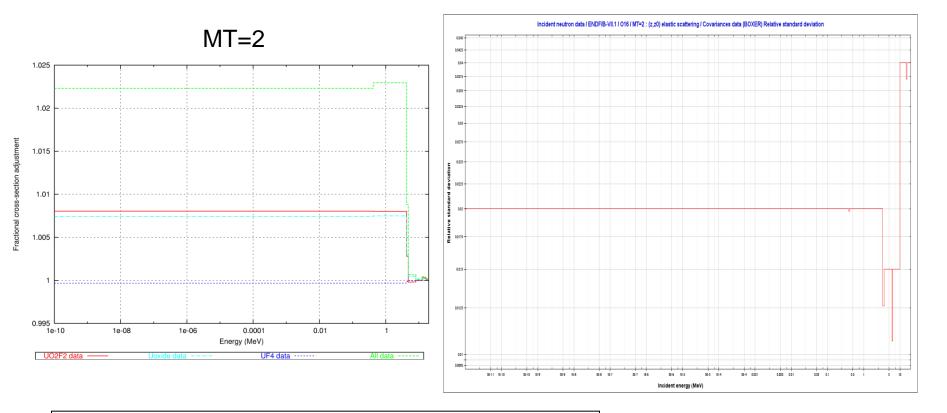





#### **Configuration Biases and Bias Uncertainties**



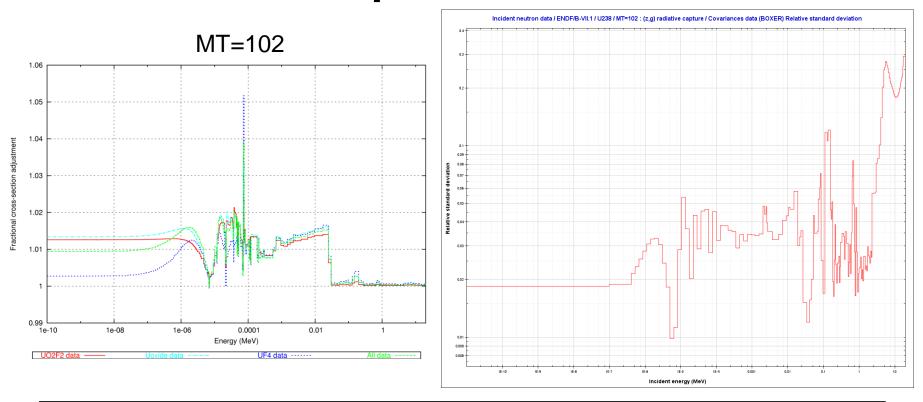
Region relatively sparse of any other integral data (~ 2-50 eV)




## <sup>235</sup>U Radiative Capture and Nubar






#### <sup>16</sup>O Elastic Scatter



Based upon Caro (1998) cross section evaluation



## <sup>238</sup>U Radiative Capture



Based upon Derrien (2004) cross section evaluation

Included decrease of thermal capture cross section for thermal LEU systems



## Conclusions

- Overall improvement in calculation-benchmark agreement when all adjustments are incorporated
  - Other parameters neglected secondary angle/energy distributions
  - Generation of sensitivities and availability of covariance
- Can aid selection of basic data for light scattering nuclei as well as fissile isotopes
  - Compatibility with TMC method results
- Effect of assumed uncertainty correlations
  - EG UACSA Phase IV benchmark seeks to inform further
- Appropriate selection of experiments
  - Adjustment consistency issue
  - Provision of sufficient constraints on adjustable data



# Thank you. Questions?

© British Crown Owned Copyright 2013/AWE