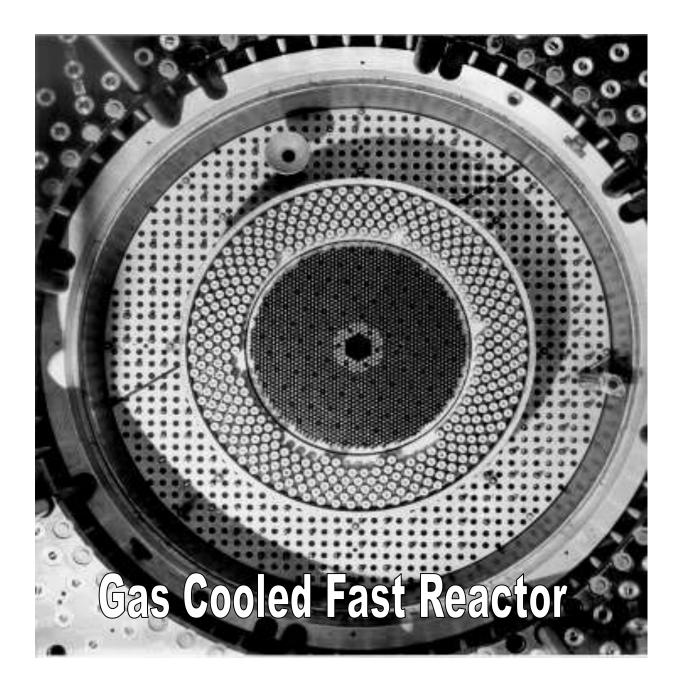
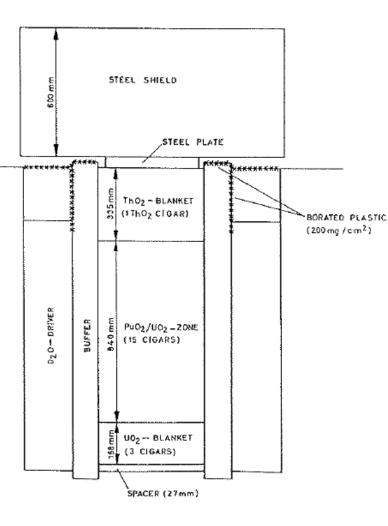


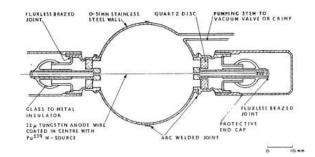
Wir schaffen Wissen – heute für morgen

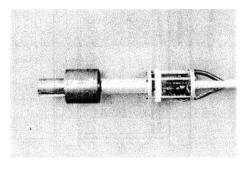

Paul Scherrer Institut

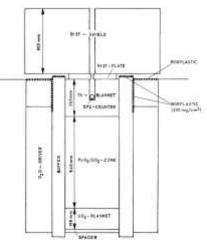
G. Perret


PROTEUS Experimental data

- Gas-Cooled Fast Reactor (1972-79)
 - UO₂-PuO₂ cores w/ and w/o blankets
 - Thorium oxide and metal cores
 - Shielding studies
- High Conversion Light Water Reactor (1980-1990)
 - Tight and large pitch, different moderation conditions
 - Absorbers worth, void coefficients
- LWR-PROTEUS (2000-2006)
 - Phase I: SVEA-96+ BWR assembly
 - Phase II: PWR mock-up with burnt fuel samples
 - Phase III:SVEA-96 Optima-2 assembly




- Investigate GCFR with PuO₂/UO₂ (15% Pu, air cooled, E≈180keV)
- Investigate Thorium cross sections in fast spectra
- Radial and axial blankets
 U depleted
 ThO₂ / Th metallic
- Shielding benchmark with large steel reflector


PROTEUS web site

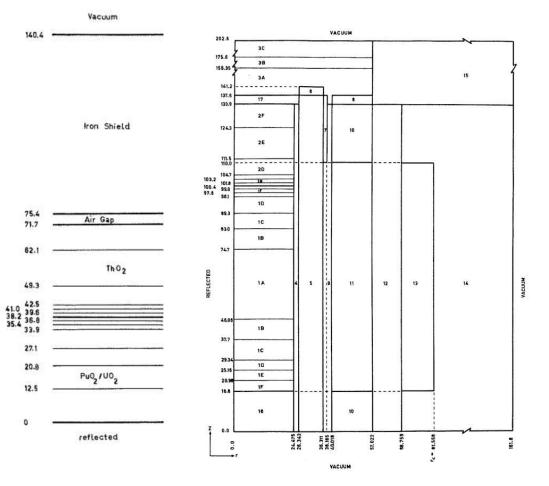
- Axial / radial reaction rate distributions (activation foils / fission ch.)
 - Capture in U-238
 - Fission in Pu-239, U-238, U-235, U-233
- Spectral indices
 C8/F9, F8/F9, F5/F9, C2/F9, (n,2n)2/C2
- Small sample reactivity worth
- Neutron spectrum
 Fast spectra measurable via time-of-flight, proton recoil counters, Li6 detectors, threshold-reaction activation foils

Availability of experimental data

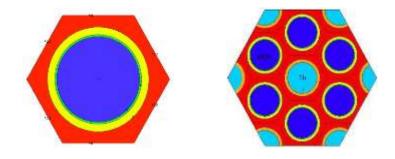
Core Number	Central reaction rate ratios	Cor- rection factors	Radial traverse	Axial traverse	Neutron spec- trum	Reactivity Worth	K- inf
3. U- metal Buffer, REF- ERENCE	C8/F9, F8/F9, F5/F9	Yes	No	No	Yes	No	No
4.a UO₂- Column	C8/F9, F8/F9, F5/F9	No	Yes, C8, F8, F9 at centre (graph)	No	Yes	No	No
4.d Steam Entry	C8/F9, F8/F9, F5/F9	No	No	No	No	Yes, for 2 "water" levels	No
6. High- UO2	C8/F9, F8/F9	Yes	No	No	Yes	No	Yes
							1

Core Number	Central reaction rate ratios	Cor- rection factors	Radial traverse	Axial traverse	Neutron spec- trum	Reactivity Worth	K- inf
7. High- Steel	C8/F9, F8/F9, F5/F9	Yes	No	No	Yes	No	Yes
9. Shield	No	No	Yes	Yes	Yes	No	No
10. High- Iron (II)	C8/F9, F8/F9, CMn/F9	Yes	No	No	Yes	No	Yes
11. Before Th	C8/F9, F8/F9, C2/F9, F2/F9, F3/F9, (n.2n)2/ C2	Yes	No	No	Yes	No	No
13. ThO₂ Blanket	As Core 11	No	Yes, F9, C2, F2, C8, F8, F3	No	Yes	No	No
15. Th- metai Blanket	As Core 11	No	Yes, F9, C2, F2, C8, F8, F3	No	Yes	No	No

- Taken from TM-41-05-01 from G. Girardin
- Some missing configurations and some updates are required but it gives a very good overview of the performed measurements

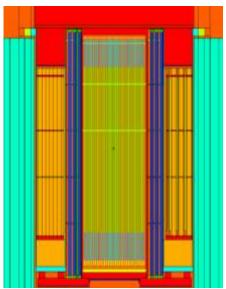

Typical uncertainties

- Spectral indices
 - 1.1-1.3% for C8/F9, F8/F9, F5/F9, F3/F9 and C2/F9
 - 1.8-2% for F7/F9 and F2/F9
 - 2.3-2.5% for C7/F9 and (n,2n)2/C2.
- Reaction rate distributions
 - 0.5% for C8, 1% for F8 and F9 in core and 2% in blanket
 - 1-2% for C2 and F2
 - 2% for F3 in core and 4% in blanket
- Reactivity worth
 - higher than normal because of Boron-plastic


GCFR Past Calculations

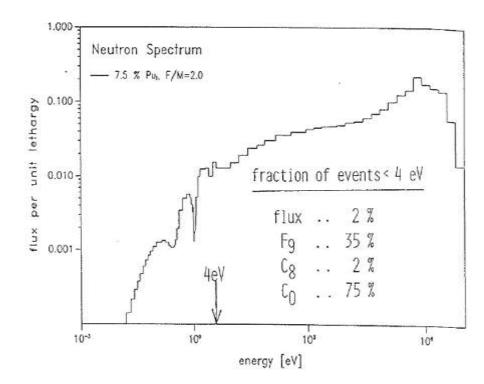
- Deterministic Calculations
 SN 1-D, DIFF-1D
 DIFF-2D
- Cross-Section Libraries
 ENDF/B-IV
 FGL5
- Cross-Sections prepared with GGC-4 and MURLAB cell codes

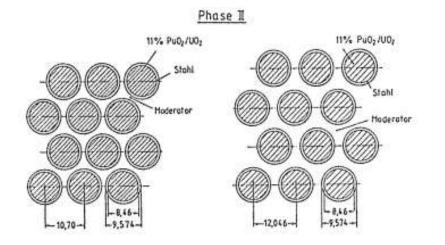



Monte Carlo Calculations (MCNPX)
 2D lattice equivalent cell model
 3D whole-reactor core model

- Cross Section Libraries
 JEFF-3.1 and 3.1.1,
 ENDF/B-VII.0 and VII.1
 JENDL-3.3 and 4.0
- Configurations

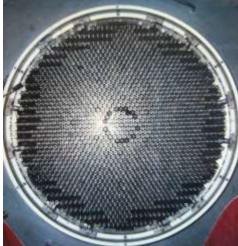
 Homogeneous PuO₂/UO₂ lattice
 Mixed PuO₂/UO₂-ThO₂ lattice



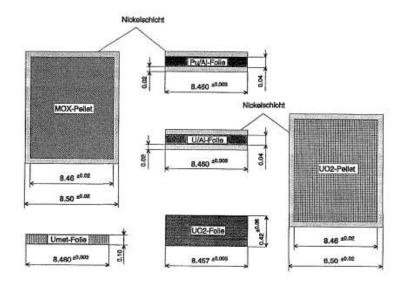


HCLWR Program (1980's) - Motivations

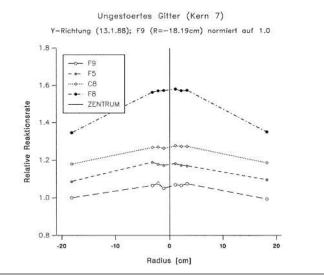
- Physics characteristics
 •F/M ≈ 2, Fissile Pu content ≈ 7.5%
 •Only "tail" of thermal neutrons
 •Low-energy resonances (0.3 eV for ²³⁹Pu, 1 eV for ²⁴⁰Pu) are important
- No experimental data
- Large calculation discrepancies in particular for void coefficient, due to strong changes in individual neutron balance components

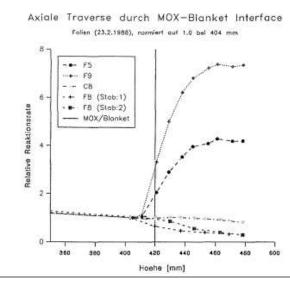


HCLWR Program (1980's)



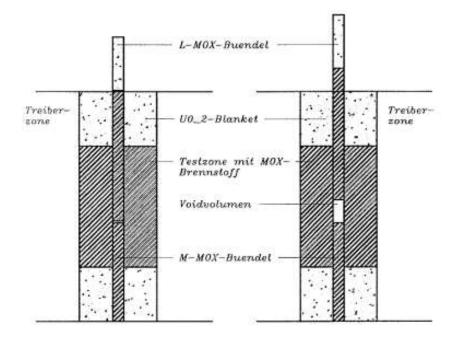
- UO₂/PuO₂ pellets with 11% PuO2
- Pu(8/9/0/1/2): 1%, 64%, 23%, 8%, 4%
- Fuel: Ø 8.46 mm, H 84 cm
- 2 axial blankets:
 - •Udep. 0.224w% ²³⁵U
 - •28-cm high each
- Several moderation conditions


	Kern	p/d	V_M/V_F	Moderator	Eff. Moderation		Hauptmerkmal
	7	1.12	0.48	H ₂ O	0.48		'Enges Gitter'
	8	1,12	0.48	ohne	0.00	ι	Voidsimulation
	9	1.12	0.48	Dowtherm	0.28	ſ	volusimiliauon
111	10	1.12	0.48	Dowtherm	0.28	٦	
111	11	1.12	0.48	ohne	0.00	}	vergiftet, Einfluss von B ₄ C
	12	1.12	0.48	H_2O	0.48	2	
	13	1.26	0.95	H_2O	0.95		'Weites Gitter'
and a second	14	1.26	0.95	ohne	0.00	ι	Voidsimulation
	15	1.26	0.95	Dowtherm	0.55	ſ	Voldsinitiation
	16	1.26	0.95	H ₂ O	0.95	ι.	vergiftet, Einfluss von B ₄ C
111	17	1.26	0.95	ohne	0.00	ſ	verginici, Emiliass von B4C
	18	a)	2.07	H_2O	2.07		Thermisches Spektrum
	19	1.26	0.95	H ₂ O	0.95		5% spaltbares Plutonium (effektiv) b)
10.20	20	1.26	0.95	D_2O	-		D ₂ O statt H ₂ O



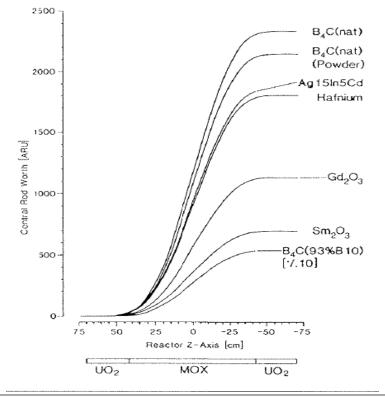
HCLWR Measurement types (1/2)

- Reaction rate ratios
 F5/F9, F8/F9, C8/F9, F1/F9, C2/F9
 Uncertainties: F5:1.4%, F8:2.0%, F9:1.4%, C8:1.8%, F1:5%
- Reaction rate traverses
 - Axial and Radial
 - MOX zone and MOX/Blanket



$$k_{\infty} = 1 + B^2 \cdot M^2$$

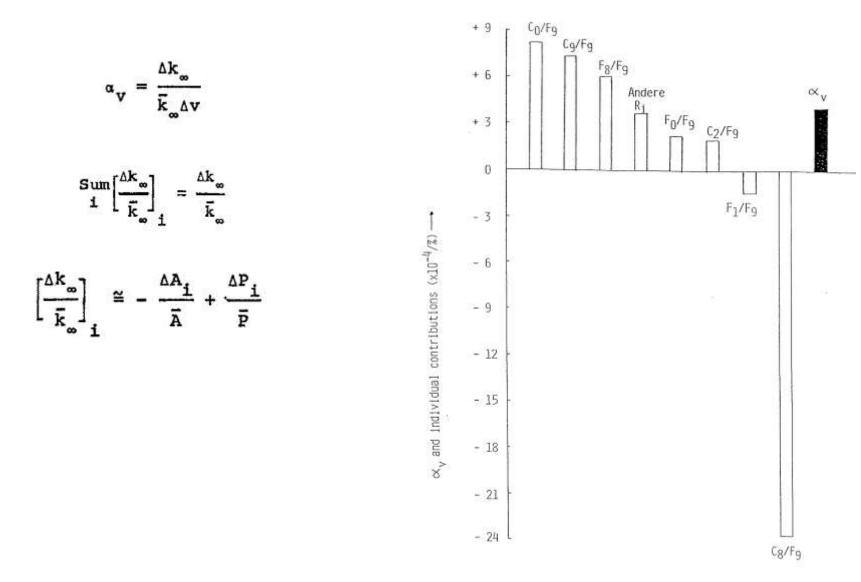
$$\frac{\rho_Z}{\rho_S} \frac{S}{R_f} = \bar{\nu} \frac{\overline{\Phi^+}^{\chi}}{\overline{\Phi^+}^S} \left(1 - \frac{1}{k^+} \right)$$


- K∞ measurements
 - •Buckling method (σ ~2.0%)
 - •Cell worth method (σ ~0.5-0.8%)
- Reactivity effects of
 - Void volume
 - Moderator volume

PAUL SCHERRER INSTITUT

$$k_{\infty} = 1 + B^2 \cdot M^2$$

$$\frac{\rho_Z}{\rho_S} \frac{S}{R_f} = \bar{\nu} \frac{\overline{\Phi^+}^{\chi}}{\overline{\Phi^+}^S} \left(1 - \frac{1}{k^+} \right)$$



- K∞ measurements
 - •Buckling method (σ ~2.0%)
 - •Cell worth method (σ ~0.5-0.8%)
- Reactivity effects of
 - Void volume
 - Moderator volume
 - Absorber rods

Absorber	Form	Durchmesser	Cladding	Bemerkung
B4C(nat)	Pellet	7.473	ja	Referenzabsorber
B4C(nat)	Pulver	7.430	ja	
B4C(93%) 10B	Pellet	7.430	ja	
Ag15In5Cd	Legierung	8.830	nein	
Hafnium	Metall	8.350	ja	(σ<1%)
Gd ₂ O ₃	Pellet	8.310	ja	
Sm ₂ O ₃	Pellet	7.000	ja	
Tantal	Metall	8.290	ja	
Eu ₂ O ₃	Pellet	8.243	ja	
Zircaloy-2	Legierung	8.300	nein	Strukturmaterial
Stahl	Metall	8.240	nein	Strukturmaterial

Void coefficient in tight HCLWR lattice

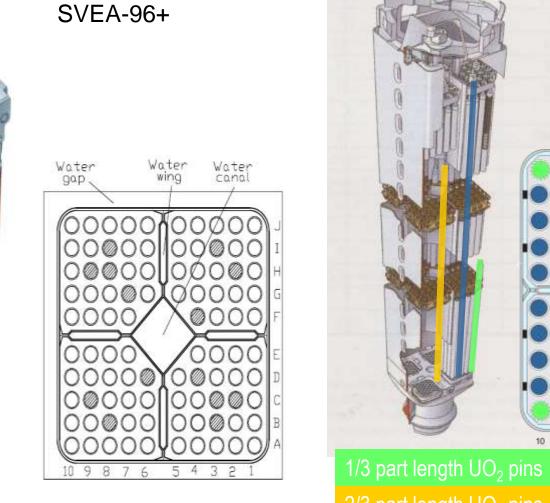
- Provide first-of-its-kind integral data for system for which different standard codes, data libraries yield large discrepancies
 Differences of up to 5% in k∞, 10% in C8/F9, even in sign of void coefficient...
- Benchmark measurements of neutron balance in different tight lattices, with representative Pu-content
 - •Simulation of voidage in each case (0%, 100%, as well intermediate)

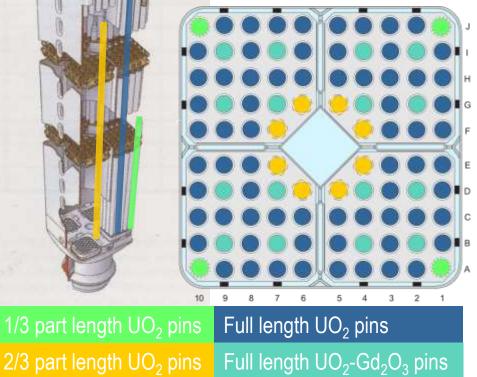
• "Moderators": H₂O, air, Dowtherm (organic liquid with intermediate Hdensity)

- Additional investigations:
 - •Effects of change in Pu-content (mixed lattice with UO₂ rods)
 - •Control rod studies, and use of new absorber materials (enr. B, Hf, etc.)
 - •Effects of control absorber on void coefficient (poisoned lattice)

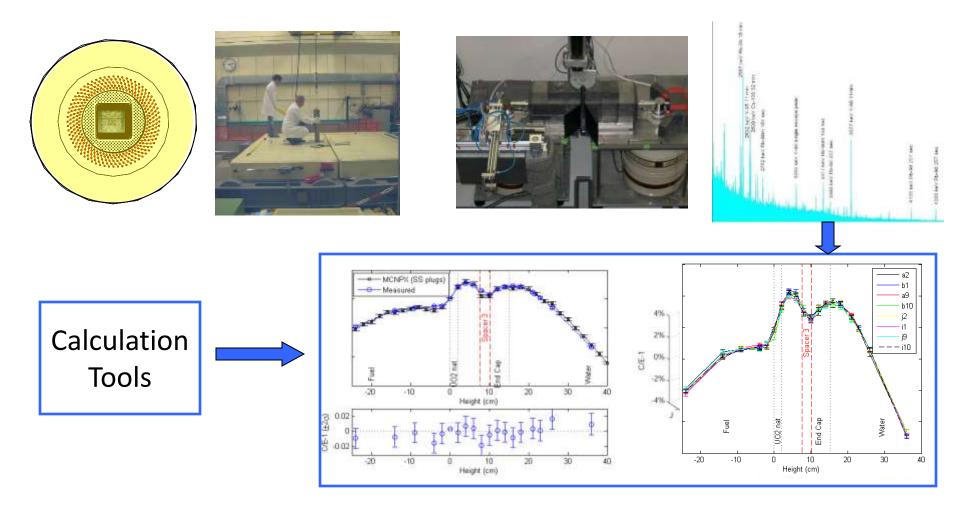
LWR-PROTEUS

\$


P


Phase I:

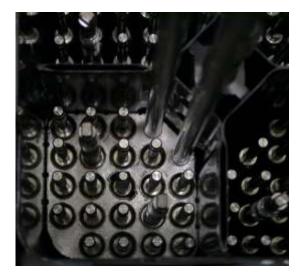
LWR Phase I and III fuel assemblies

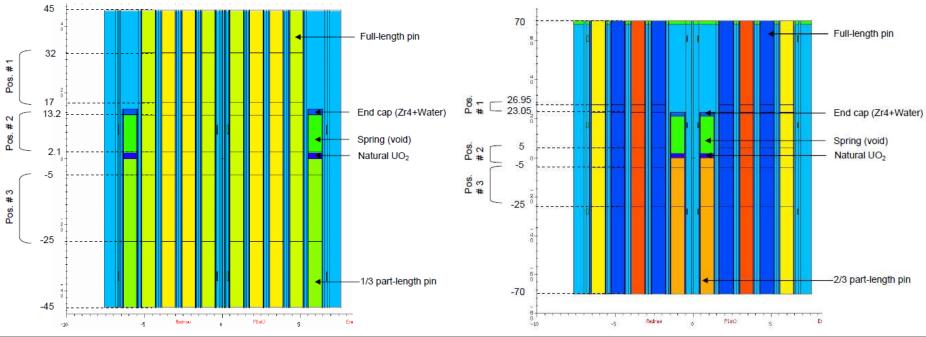


Phase III: SVEA-96 Optima2

Reaction Rate Measurements per y-scan

List of configuration in Phase I


Conf.	Axial Enrich ^t Zone	Water Density (Channel/Bypass)	Absorber Blades	Assembly Layout	
1B	upper				
1A	lower	100%/100% (pure H ₂ O)	None	Symmetric	
1C	boundary	(pare 1120)			
2C	lower		Full length B ₄ C		
2A	lower	100%/100% (pure H ₂ O)	Full length Hf	Symmetric	
2B	upper	([2-)	Full length Hf		
ЗA	lower		None	Symmetric	
3B	upper	10%/75% (CH ₂ w/o H ₂ O)			
3D	boundary				
4A	lower	10%/100% (CH ₂ w/ H ₂ O)	None	Symmetric	
5A	lower	10%/75% (CH ₂ w/o H ₂ O)	Full length Hf	Symmetric	
6A	lower	100%/100% (pure H ₂ O)	Part length Hf	Symmetric	
7A	lower	100%/100% (pure H ₂ O)	None	Asymmetric	


- Configuration 1C
 - Gamma-scanning for total fission rate axial distribution ($\sigma \sim 0.5-1\%$)
 - Axial U-235 fission chamber scan
 - U-238 metal, U-235/AI alloy foil measurements
 - Gold axial flux distributions (outside test zone)
- Configuration 2C (boron-carbide in lower part of fuel assembly)
 - Gamma-scanning fission (~1% absolute, 0.5% relative) radial maps with 64 pins
 - Pin reactivity worths: $12 UO_2$ and $2 Gd_2$ - O_3 pins (0.7% stat, 4% tot)
 - Foil irradiation (~2% for U8 foils, ~1% for UO₂ foils)
 - Traversing in-core probe with GM tubes (~5%)

PAUL SCHERRER INSTITUT

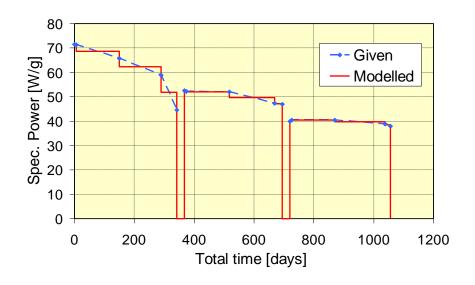
List of configuration in Phase III

Conf.	Axial Interface	Moderator
1	1/3 part-length rods	67% H ₂ O, 33% D ₂ O
2	2/3 part-length rods	67% H ₂ O, 33% D ₂ O
3	Top section (84 pins)	Boxes with different mixtures of D_2O , H_2O

- Phase III-1
 - Three radial maps of C8, Ftot and C8/Ftot
 - 72 pins measured (including 8 UO₂-Gd₂O₃ pins) + 4 PLR
 - Detailed axial maps (2cm steps) of C8, Ftot and C8/Ftot
 - 8 UO₂ pins close to PLR
 - $4 UO_2^-$ -Gd₂O₃ pins next to PLR
- Phase III-2
 - Three radial maps of C8, Ftot and C8/Ftot
 - 74 pins measured (including 7 UO₂-Gd₂O₃ pins)
 - Detailed axial maps (2cm steps) of C8, Ftot and C8/Ftot
 - 4 UO₂ pins close to PLR
 - $3 UO_2$ -Gd₂O₃ pins next to PLR
 - $7 UO_2 PLR$
- Uncertainties
 - Ftot, C8: 0.5-0.9%, C8/Ftot: 2.5% (with nucl. data uncertainties)

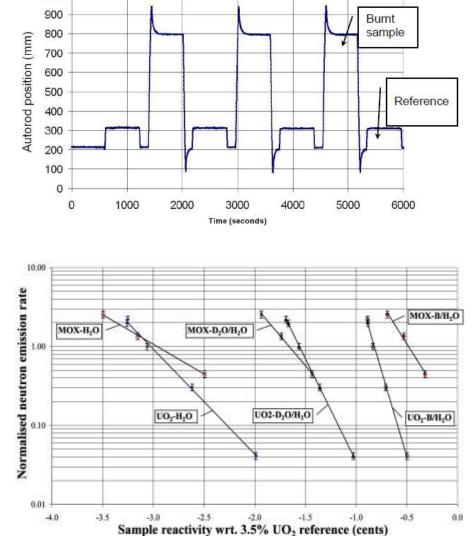
LWR Phase II set-up

- Study of burnt PWR/BWR fuel segments inserted in the middle of a lattice of fresh PWR rods
- Different moderation conditions
 H₂O, H₂O/D₂O, borated water


Reactivity worth measurement of
 spent fuel
 special samples (absorber)

Spent fuel samples

- Spent fuel segments from Swiss nuclear power plants
 - 9 UO₂ burn-ups from ~40 to ~120 GWd/t
 - 4 MOX burn-ups up to ~70 GWd/t
 - 40 cm long with overclad (Ø 1.2cm)



- CASMO-4/5 burn-up calculations using NPP irradiation conditions
- Measurement by destructive analysis (gamma-scanning, ICP-MS and HPLC-ICP-MS, 57 isotopes)

1000

- Reactivity worth measurements (w/ respect to UO₂ 3.5%)
 Compensation and asymptotic period measurements
 Best uncertainty ~ 0.5% (4% w/ nuclear data uncert.)
- Neutron source emission
 - Measurements by source amplification and outside reactor
 - Absolute and relative values
 - Typical uncertainty ~ 5% (absolute) and 1.5% (relative)

• GCFR

- (U, Pu)O₂ and ThO₂ and Th metal configurations
- Mainly reaction rate ratios and distribution measurements
- Uncertainties <2-3% for most reactions
- Additional measurements: shielding and steam entry effects

Applications: X-section improvements in fast spectra...

- HCLWR
 - Tight and wide pitch lattices with 0, 42.5% and 100% moderation
 - k∞ measurements with 0.5% to 0.8% uncertainty
 - reactivity worth of absorber measurements (σ <1%)
 - reaction rate ratios and distribution measurements ($1\% < \sigma < 5\%$)

Applications: keff for different conditions of BWR, reaction rate distribution at the interface with blanket...

- LWR-PROTEUS Phase I and III
 - Numerous radial and axial power and C8 distributions in SVEA-96+ and SVEA-96 Optima2 assemblies (σ_{fiss} ~0.5-1%, $\sigma_{C8/fiss}$ ~2.5%) with varying conditions: absorber-rods, moderation
 - Pin reactivity worth (σ_{rel} ~0.5%, σ_{abs} ~4%)
 - In-core probe measurements (σ~5%)
 - Core Criticality

Applications: Power distributions in BWR, keff at cold conditions...

- LWR-PROTEUS Phase II
 - Spent fuel samples 20 to 120 GWd/t (UOX, MOX)
 - Isotopic composition of 51 nuclides
 - Burn-up with Nd-148 (σ ~2.5%)
 - Reactivity worth (σ~0.5%)
 - Relative and absolute neutron source strength (σ ~1.5% and 4%)

Applications: Burn-up credit, X-sections...

PAUL SCHERRER INSTITUT

Thank you for your attention, comments and questions.

