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1 Introduction

In 2012 an international committee [1], herein called SG38, was formed to develop a modern structure to
replace the ENDF-6 [2] format for storing evaluated nuclear reaction data on a computer system. This
committee divided the project into seven tasks. One of these tasks, the design of General-Purpose
Data Containers (GPDCs), is described in this article.

What type of data does SG38 need to store and why is the task called General-Purpose Data
Containers? The most common types of data in an evaluated nuclear reaction database are represen-
tations of physical functions in tabulated1 forms. For example, a cross section σ(E) as a function of
energy E that is given at a �nite set of energies with an interpolation rule to obtain the value between
two consecutive points. An example of a tabulated cross section is shown in Table 1. Another example
of a tabulated physical function is an average multiplicity m(E) given at a �nite set of energies. Both
σ(E) and m(E) can be stored in the same container type as they represent a 1-dimensional function
of the generic form f(x) as tabulated data. There is also a need to store 1-dimensional functions us-
ing truncated Legendre or polynomial (or others) expansions. In addition, 2- and 3-dimensional (i.e.,
f(x, y) and f(x, y, z) ) tabulated functions are needed as well as containers for matrices. The phrase
General-Purpose implies that the containers are to be designed to store generic forms of tabulated
data (e.g., f(x)) rather than one for each physical function (e.g., σ(E), m(E)). Also, where possible,
it would be bene�cial to design containers that can store data forms not currently used in evaluated
nuclear database or at least be easily extended.

Table 1: A tabulated cross section. That is, a cross section listed at a �nite number of points with
the cross section between the points obtained via interpolation. The interpolation rule (e.g., 'lin,lin',
'log,lin') must also be de�ned.

energy (MeV) cross section (b)

15.5 0.0
15.75 0.25
16.0 0.65
16.5 0.85
20.0 0.95

In addition to containers for storing physical functions as tabulated data, other types of containers
are needed. There exists a desire within SG38 to support the storage of documentation at various levels
within an evaluated �le. Containers for storing non-functional data (e.g., a list of numbers) as well as
units and labels for axes are also needed. Herein, containers for storing physical functions are called
functional containers.

One of the goals for the general-purpose data containers task is to design containers that will be
useful to other scienti�c and engineering applications. To meet this goal, task members should think
outside of the immediate needs of evaluated nuclear data to ensure that the containers are general-
purpose rather than simply repackaged versions of existing containers. While the examples in this
article may be speci�c to nuclear reaction data, it is hoped that the end product will be useful for other
applications. To this end, some speci�cations will be left to the end user.

1Tabulated data are also called pointwise or piecewise data.
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A second goal is to design the structure of the containers and not the representation of the data in
a �le. In this way, the containers can be implemented in various meta-languages (see Section 3.1).

Another goal for SG38 is to design a structure that is shareable between di�erent nuclear reaction
data groups. This led the SG38 committee to choose XML [11] as the primary meta-language for
expressing the structure in a computer �le. Throughout this article, many examples will be given
in XML. However, the structure of the containers de�ned in this article can be expressed in other
meta-languages (e.g., JSON [10], HDF5 [12]) as illustrated in Section A.

In the talks given by David Brown and Morgan White at the Dec. 2013 SG38 meeting in Japan, it
was noted that data types (e.g., types of integers and �oats) need to be speci�ed for both the general-
purpose data containers and the nuclear reaction structure. Since the nuclear reaction structure will
inherit from the general-purpose data containers, it would be bene�cial if one set of data types can be
speci�ed that will work for both. However, if that is not possible, it would still be bene�cial for the
general-purpose data container types to be a super set of the nuclear reaction structure types.

This article will �rst give some de�nitions, then needs for the nuclear data community, the require-
ments for the general-purpose data containers. This is followed by de�nitions of various character sets,
of basic data types, and �nally of general-purpose data containers are speci�ed.

2 Version

This document describes version 1.0 of the General-Purpose Data Containers (GPDC 1.0).

3 Notation and de�nitions

This section de�nes some common notation and de�nitions used in this article.

3.1 Meta-language

In this article, the word meta-language means any hierarchical storage system useful for storing the
general-purpose data containers. Examples include XML [11], HDF5 [12], Python [15], C [13] and �le
system hierarchy.

3.2 Data versus meta-data

This article distinguishes between data and meta-data. Data are the values that represent a function,
list or table. For example, a pointwise representation of f(x) = 1/x for the domain 1 ≤ x ≤ 10 can be
represented by the two points (1, 1) and (10, 0.1) or the data "1 1 10 0.1". Meta-data are quali�ers that
a�ect how the data are to be interpreted. Examples of meta-data include interpolation rules, labels
and units. In the example above, the data "1 1 10 0.1" exactly represent the function for the domain
1 ≤ x ≤ 10 when log-log interpolation is used. One of the requirements for the data containers is that
they allow for storage of meta-data and de�ne how meta-data are to be stored.

3.3 Functional expressions in this article

The dimension of a function is de�ned as the number of independent variable it has. For example, f(x)
and f(x, y, z) are 1- and 3-dimensional functions.
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In other articles, 1-dimensional functions are often expressed (i.e., written) as f(x) or y(x) while
2-dimensional and 3-dimensional functions may be expressed as f(x, y) and f(x, y, z). In this article
a more general expression for an n-dimensional function is used. The 1-dimensional function is ex-
pressed as x0(x1), while the 2-dimensional and 3-dimensional functions are expressed as x0(x2, x1) and
x0(x3, x2, x1) respectively. An n-dimensional function is expressed as2 x0(xn, ..., x3, x2, x1). This rep-
resentation is used to preserve the meaning of the variables when nesting (n-1)-dimensional functions
within an n-dimensional function. For example, consider the angular function P (E,µ) where the angle
θ is given via µ = cos(θ) and E is energy. In tabulated form this function may be given as a list of P (µ)
functions at various energies. A generic expression for the P (E,µ) function might be f(x, y) where x
represents the E variable and and y represents the µ variable. While the generic expression for the
P (µ) function might be f(x) where x now represents the µ variable. That is, the mapping of P (E,µ)
to f(x, y) and P (µ) to f(x) causes µ to be represent by y in f(x, y) and by x in f(x). Using the generic
expressions x0(x2, x1) and x0(x1) for P (E,µ) and P (µ) respectively, the meaning of the x1 variable
(i.e., x1 = µ) is consistent.

For a 2-dimensional function x0(x2, x1) in which the integral over the x1 is normalized to 1, this is
expressed (i.e., written) as x0(x1|x2). In general, for an n-dimensional function in which the integral
over the m fastest independent variables is 1, this is expressed as x0(xm, ..., x1|xn, ..., xm+1).

When an n-dimensional function is expressed as collated tabulated data (see Sections 4.1) the
independent variable x1 is said to vary the fastest, the independent variable x2 varies the second fastest
and so on to the independent variable xn which varies the slowest. This verbiage expresses the way data
are stored in collated tabulated containers which is similar to the way data are stored in C or Python
arrays. For example, for the C array ABC declared as int ABC[3][4][6] and indexed as ABC[i3][i2][i1],
the index i1 varies the fastest in memory while i3 varies the slowest.

To understand why the independent variable x1 is said to vary the fastest (and x2 the second faster),
consider the storage of the tabulated data for the angular distribution function P (µ|E) as a function
of angle θ via µ = cos(θ) and energy E which is a 2-dimensional function. For evaluated nuclear data,
these data are often stored as functions of P (µ) at various E's. Table 2 presents a simple tabulated
P (µ|E) with P (µ) given at three energies (0, 0.5 and 20.0 eV). Table 3 shows how these data can be
stored3 in a �le. As seen in Table 3, the independent variable µ varies faster than the independent
variable E.

Table 2: A tabulated P (µ|E) given as P (µ) at three energies. P (µ) between two energies is obtained
by interpolation.

E = 0.0 eV E = 0.5 eV E = 20.0 eV
µ P (µ) µ P (µ) µ P (µ)
-1 0.5 -1 0.4 -1 0.8
1 0.5 1 0.6 -0.5 0.6

0 0.0
0.5 0.6
1 0.8

2It is also reasonable to express the general form as f(xn, ..., x3, x2, x1) where x0 is replaced with f . Some text
will express an n-dimensional function as f(x1, x2, x3, ..., xn) which is similar to the expression used here except for the
indexing of the independent variables and the naming of the dependent variable (i.e., f versus x0).

3A better storage representation for this type of data will be presented later.
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Table 3: A possible �le representation of the tabulated P (µ|E) from Table2.

0.0 -1 0.5

0.0 1 0.5

0.5 -1 0.4

0.5 1 0.6

20.0 -1 0.8

20.0 -0.5 0.6

20.0 0 0.0

20.0 0.5 0.6

20.0 1 0.8

3.4 Number range

When listing a range of number the following notation is used:

• For numbers in the range N1 to N2 inclusive, the notation [N1,N2] is used.

• For numbers in the range N1 inclusive to N2 exclusive the notation [N1,N2) is used.

• For numbers in the range N1 exclusive to N2 inclusive the notation (N1,N2] is used.

• For numbers in the range N1 exclusive to N2 exclusive the notation (N1,N2) is used.

3.5 Floating point numbers and the e-form numbers.

Two string representations of �oating point numbers are allowed: �xed point and e-form. A �xed point
string represents a �oating point value as an optional sign character (i.e. `+' or `-') followed by a
sequence of 0 or more Arabic Numerals (see Section 6.2) followed by an optional period character (`.')
which can be followed by 0 or more digits with the requirement that at least one Arabic Numeral be
present. Examples of valid strings are: `123.34', `+32', `0.0021' and `-.014'. The e-form represents a
�oating point value using the exponential notation. The exponential notation contains a �xed point
string followed by either the `e' or `E' character and a signed integer (e.g., `1.234e-21', `1.234E-21',
`4.331E-03'). The FORTRAN [14] d-form4 is not allowed.

4 Review of nuclear data container needs

This section gives an overview of the various data used within the SG38 communities.

4.1 Tabulated or pointwise data

Tabulated or pointwise data are numerical data that represent a function (e.g., x0(x1), x0(x2, x1)) by
listing the function at a �nite number of points. The value of the function at an intermediate point is
obtained by interpolating.

4For the exponential notation, FORTRAN distinguishes between single and double precision value. Single precision
strings use the `e' or `E' to signify the exponential value while double precision strings use the `d' or `D'.
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4.1.1 1-dimensional, 1-d or x0(x1) tabulated data

These data are tabulated representations of the single-valued5 function x0(x1). The tabulation is a
list of (x1, x0) pairs with the pairs sorted by increasing x1 values. In addition, an interpolation rule
is de�ned to obtain an x0 value between consecutive x1 values. In this article, these data are labeled
`XYs'6. These data can be represented by two columns where the �rst column stores the x1 values and
the second column stores the x0 values.

4.1.2 2-dimensional, 2-d or x0(x2,x1) tabulated data

These data are tabulated representations of the single-valued function x0(x2, x1). These data can be
represented by three columns of data, although not always e�ciently (see section 4.2), where the �rst
column stores the x2 values, the second column stores the x1 values and the third column stores the x0

values. There are two types of three-column data that represent the function x0(x2, x1): herein, they
are called dispersed and collated data.

Dispersed or scatter x0(x2, x1) data: These data typically have only one x1 (x2) value for each x2 (x1)
value. This type of data can be sorted by either the x1 or x2 value. An example is shown in Table 4.
This type of data is not currently used in nuclear data and are currently not speci�ed in this document.
However, a table (Section 21) or array (Section 13) container can be used as they are an e�cient way
to store this type of data.

Table 4: An example of scattered x0(x2, x1) data. For this type of data, few if any rows (i.e., points)
have the same x1 and/or x2 values.

x2 x1 x0

1.0 1.0 0.0
1.1 0.2 0.2
1.2 0.6 0.1
2.1 0.3 1.1
2.2 0.5 3.2
2.4 2.1 2.1
2.9 0.6 1.5
3.3 0.4 0.4

Collated x0(x2, x1) data: These data contain a list of x2 values and each x2 value contains an XYs dataset
(i.e., a x0(x1) function). These data are sorted by increasing x2 values and include interpolation rules
for obtaining the XYs dataset at points between consecutive x2 values. An example of collated data
is shown in Table 5 (interpolation rules not shown). In this example there are three distinct x2 values
(1.0, 1.1 and 1.7) and each has an associated XYs dataset. As example, for x2 = 1.1 the associated

5An x0(x1) and high dimensional functions are allowed to have a discontinuity when the regions container is used (see
Section 17).

6Since in this document we prefer to us the generic functional expression x0(x1) one should label these data as
`X_0X_1s'. We chose 'XYs' as `X_0X_1s' is awkward and many would express this function type as y(x) with each
point listed as (xi, yi))
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x0(x1) function is the points (0.3, 1.1) and (0.5, 3.2) which will have an interpolation rule for obtaining
the x0 value for a point for x1 between 0.3 and 0.5.

Table 5: An example of collated x0(x2, x1) data. For this type of data, a given x2 has an associated
XYs (i.e., x0(x1)) tabulated function. No interpolation meta-data is shown in this example.

x2 x1 x0

1.0 0.0 0.0
1.0 0.2 0.2
1.0 0.6 0.1
1.1 0.3 1.1
1.1 0.5 3.2
1.7 0.3 2.1
1.7 0.6 1.5
1.7 1.1 0.4
1.7 1.4 0.4
1.7 2.4 0.4

4.1.3 3-dimensional, 3-d or x0(x3,x2,x1) tabulated data

These data are tabulated representations of the single valued function x0(x3, x2, x1). These data can
be represented by four-columns of data, although not always e�ciently (see section 4.2), where the �rst
column stores the x3 values, the second column stores the x2 values, the third column stores the x1

values and the fourth column stores the x0 values. Like the x0(x2, x1) data, x0(x3, x2, x1) tabulated
data can be either dispersed or collated.

Dispersed or scatter x0(x3, x2, x1) data: These data typically have only one x2 and x1 value for each
x3 value and similarly for any permutation of x2, x1 and x3. These data are currently not speci�ed.
However, a table (Section 21) or array (Section 13) contain can be used as they are an e�cient way to
store this type of data.

Collated x0(x3, x2, x1) data: These data contain a list of x3 values where each x3 value contains an asso-
ciated x0(x2, x1) (or multiD_XYs with dimension = 2) dataset. These data are sorted by increasing x3

values and include interpolation rules for obtaining the x0(x2, x1) dataset at points between consecutive
x3 values. See Table 8 for an example of collated x0(x3, x2, x1) data.

4.2 Discussion

One goal of the WPEC SG38 project is to design a set of general-purpose data containers. In this
discussion, the general-purpose data containers will be divided into 3 categories: generic, functional
and array data containers.

As its name implies, the generic data container could store anything that can be stored in a functional
or array data container. Functional and array data containers are added in order to reduce redundancy,
storage requirements and access time as well as to clearly delineate sections of the data and to make
interfaces simpler (i.e., to satisfy requirements in section 5).
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The only generic data container considered here is the table container that has a set of columns and
rows. A given column and row de�nes a cell. As this is a generic data container, there is no restriction
on the type of data that can be stored in each cell (e.g., a string, int, �oat, empty value).

The other two data container categories, functional and array, are designed to store tabulated data
representing a mathematical function or transform. As the names imply, the functional data contain-
ers are designed to hold single-valued tabulated data representing functions of the form x0(xn, ..., x1)
while the array data containers are designed to hold array data (e.g., deterministic transport matrices,
rotational and Lorentz transformations).

While any tabulated data stored in a functional data container can be stored in an array, in many
cases other storage methods are more e�cient than arrays (at least for the types of data often encoun-
tered in nuclear evaluations). Consider the following 1-, 2- and 3-dimensional tabulated data examples.

1-d tabulated functional data (i.e., XYs or x0(x1)) of length N can be stored as a array of size N by
2 (see Section 14). For these data, the array and the function data containers are similar (there may
be an implementation di�erence, for example the array container may have a `shape=(N,2)' attribute
while the functional container only needs to de�ne its length since the number of data points per entity,
2, is known implicitly).

As for collated 2-d tabulated functional data (i.e., x0(x2, x1)), the most e�cient way to store them
is as a list of XYs (i.e., x0(x1)) data, where each XYs has an associated x2 value. To understand this,
consider the way tabulated angular distribution data P (µ|E) are stored as a function of projectile energy
E in the LLNL ENDL format versus the way they are stored in the ENDF format. (Here, µ = cos(θ)
where θ is the outgoing particle's angle in the center-of-mass frame). In ENDL, the data are stored as
an array of N by 3 where each entity - each set of E, µ and P (or as generic variables x2, x1 and x0)
values - are stored as one row of the array. A snippet from an ENDL �le showing data for the last two
projectile energies, E, is shown in Table 6.

Table 6: An example of ENDL collated x0(x2, x1) data. For this type of data, a given x2 has an
associated XYs (i.e., x0(x1)) tabulated function. The example is angular distribution data P (µ|E). No
interpolation meta-data is shown in this example.

E µ P (µ|E)
.
.
.

1.5000000E+01 -1.00000E+00 2.18579E-01

1.5000000E+01 -3.50000E-01 1.74859E-01

1.5000000E+01 0.00000E+00 4.37157E-01

1.5000000E+01 5.00000E-01 6.55736E-01

1.5000000E+01 1.00000E+00 1.31149E+00

2.0000000E+01 -1.00000E+00 2.18579E-01

2.0000000E+01 -3.50000E-01 1.74859E-01

2.0000000E+01 0.00000E+00 4.37157E-01

2.0000000E+01 5.00000E-01 6.55736E-01

2.0000000E+01 1.00000E+00 1.31149E+00

The same data stored in the ENDF format using the ENDF TAB2 and TAB1 records would look
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somewhat like that shown in Table 7. That is, attached to each E (e.g., x2) value is its associated P (µ)
(e.g., x0(x1)) data. In ENDF, each P (µ) dataset is stored in a TAB1 record. The TAB1 datasets are
then organized inside a TAB2 record along with their associated E values.

Table 7: A schematic example of the way collated P (µ|E) (i.e., x0(x2, x1)) tabulated data are stored
in the ENDF format. For this type of data, a given E (i.e., x2) has an associated P (µ) (i.e., x0(x1))
tabulated function. No interpolation meta-data is shown in this example.

.

.

.

1.5000000E+01

5

-1.00000E+00 2.18579E-01

-3.50000E-01 1.74859E-01

0.00000E+00 4.37157E-01

5.00000E-01 6.55736E-01

1.00000E+00 1.31149E+00

2.0000000E+01

5

-1.00000E+00 2.18579E-01

-3.50000E-01 1.74859E-01

0.00000E+00 4.37157E-01

5.00000E-01 6.55736E-01

1.00000E+00 1.31149E+00

As can be seen from the examples above, the ENDF format does a better job at satisfying require-
ments in section 5 since

• Requirement 2: The ENDF format re-uses the TAB1 record (the same container used to store
x0(x1) data) to store the P (µ) data for each E value.

• Requirement 3 and 4: The ENDL format stores each E value multiple times, which is redundant
and requires more memory and parsing time.

• Requirement 5: the ENDF format does a better job of clearly delineating each E value and its
associated P (µ) dataset. In the ENDL format, the code reading the data has to determine where
one E dataset starts and ends by checking the E value for each line.

As for collated 3-d tabulated data (i.e., x0(x3, x2, x1)), the most e�cient way to store them is as a
list of x0(x2, x1) data, where each x0(x2, x1) has an associated x3 value7. To understand this, consider
the way outgoing energy distribution versus angle and energy tabulated data, P (E′|E,µ), are stored in
the LLNL ENDL format versus the way they are stored in the ENDF format. A speci�c example from
ENDL2011.0 of P (E′|E,µ) is shown in Table 8. In this example, the �rst 97 rows (not all are shown,
hence the ...) are for the same E and µ, and the �rst 398 are for the same E.

7Or, to �ip it around an x3 has an associated x0(x2, x1).
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Table 8: An example of the way collated P (E′|E,µ) (i.e., x0(x3, x2, x1)) tabulated data are stored in
the ENDL format. No interpolation meta-data is shown in this example.

E mu E' P(E' | E,mu)

1.00000000e-11 -1.00000000e+00 1.00000000e-18 7.32483405e+04

1.00000000e-11 -1.00000000e+00 8.27577349e-18 1.85252842e+05

1.00000000e-11 -1.00000000e+00 1.55515470e-17 2.37626219e+05

1.00000000e-11 -1.00000000e+00 2.28273205e-17 2.74116635e+05

... (89 rows with the same E and mu)

1.00000000e-11 -1.00000000e+00 1.24996837e-07 1.00001559e+06

1.00000000e-11 -1.00000000e+00 2.49993674e-07 1.00002607e+06

1.00000000e-11 -1.00000000e+00 4.99987347e-07 1.00003348e+06

1.00000000e-11 -1.00000000e+00 9.99974694e-07 1.00003872e+06

1.00000000e-11 -5.00000000e-01 1.00000000e-18 8.11313020e+04

1.00000000e-11 -5.00000000e-01 8.27586555e-18 2.14499782e+05

1.00000000e-11 -5.00000000e-01 1.55517311e-17 2.79645195e+05

1.00000000e-11 -5.00000000e-01 2.28275967e-17 3.25619648e+05

...

1.00000000e-11 -5.00000000e-01 1.24998418e-07 1.00000847e+06

1.00000000e-11 -5.00000000e-01 2.49996837e-07 1.00001298e+06

1.00000000e-11 -5.00000000e-01 4.99993674e-07 1.00001618e+06

1.00000000e-11 -5.00000000e-01 9.99987347e-07 1.00001844e+06

1.00000000e-11 0.00000000e+00 1.00000000e-18 8.62163443e+04

1.00000000e-11 0.00000000e+00 8.27595761e-18 2.41691941e+05

1.00000000e-11 0.00000000e+00 1.55519152e-17 3.23256255e+05

1.00000000e-11 0.00000000e+00 2.28278728e-17 3.82542594e+05

...

6.00000000e+01 1.00000000e+00 5.32357998e+01 2.32311309e-09

6.00000000e+01 1.00000000e+00 5.52360863e+01 2.51977485e-09

6.00000000e+01 1.00000000e+00 5.52360883e+01 2.36795140e-07

6.00000000e+01 1.00000000e+00 5.72362140e+01 2.57006565e-07

Here, it is important to note that all E values are stored many times. In addition, each µ value for
a given E value is also stored many times. As the number of E′, P pairs for a given E and µ increases,
the extra storage required to store redundant E and µ values approaches as factor of 2. For one ENDL
P (E′|E,µ) dataset, the ENDL array format requires 16MBs of disk space. In GND, these data are put
into a multiD_XYs( dimension = 3 ) data container (to be de�ned later) and only requires 6MBs of disk
space. In this example, most of the 2.67 savings factor comes from storing the data in a multiD_XYs(
dimension = 3 ) data container instead of a array data container8. In addition to saving space, using
functional data containers reduces redundancy and speeds up access time.

If these data were scatter data (i.e., E, µ and E′ all di�ering between adjacent rows) then the data
could not be stored in a more compact form. However, these data and much of the data in the ENDL

8 The additional savings result from storing numbers in a more e�cient ASCII form (e.g., 1.23456e+03 is stored as
1234.56 and not 1.23456e+03)
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and ENDF formats are not scatter data. Instead, the data are divided into sections with common values
(called collated in this article), and each section may be further divided into sub-sections. As in the
example above for the ENDL P (E′|E,µ) format, the data are divided into sections by E and within
each section they are divided into sub-sections by µ. The �rst E section contains all data for the lowest
value of E, the next section for the next lowest value of E and so on. Within each E-section, the µ
values are also organized into µ-sections sorted by increasing µ values and each µ-section contains many
E′, P pairs sorted by increasing values of E′.

4.2.1 Multi-valued functions

The XYs container stores single-valued, single-interpolation data that represent a function x0(x1). Some
data in ENDF are multi-valued and/or have regions with di�erent interpolation rules. To store these
type of data, XYs containers can be adjoined with a regions container. In addition, some x0(x2, x1)
or x0(x3, x2, x1) data are multi-valued and/or have regions with di�erent interpolation rules along x2

or x3, respectively. These are stored in a regions container as adjoining x0(x2, x1) or x0(x3, x2, x1)
containers.

4.2.2 Other functional containers

At times, a tabulated n-dimensional function is given at �xed points (i.e., a grid) along each independent
dimension (i.e., axis). A gridded tabulated function can be stored more compactly by storing each axis's
grid once and storing the functional values (i.e., x0) in an array. The functional values are stored in the
array container (see Section 13) which is embedded in a gridded container (see Section 18) that also
stores axes information.

Two other 1-d functional data containers are de�ned, one for a Legendre and one for a polynomial
representation of 1-d data. Some angular x0(x1) data (e.g., the P (µ) data in P (µ|E)) are stored as
Legendre coe�cients. For other 1-d functions, it is convenient to store them as a polynomial expansion.
Legendre and polynomial data are stored in the series container (see Section 15) with the value for the
function attribute being Legendre and polynomial, respectively.

5 Requirements for General-Purpose Data Containers

Before de�ning the speci�cations for the general-purpose data containers, it is worth de�ning some
requirements.

requirements:

1. The underlying data types used in general-purpose data containers shall be compatible with
commonly used computer languages and libraries, and shall be represented in a form that makes
them easy to read and write using standard tools.

2. Data containers should be designed to be consistent with object-oriented programming. This
includes the nesting of data containers when it make sense instead of de�ning a new sub-container.

3. The structures should reduce redundancy.

4. Containers should make e�cient use of computer resources. This is a compromise between:
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(a) e�cient use of memory - volatile (e.g., RAM) and non-volatile storage (e.g., disk drive).

(b) ease of conversion to other forms.

(c) time to convert to other forms.

5. Distinct regions of data with di�erent meta-data shall be clearly delineated.

6. A mechanism for storing units and labels for data should be speci�ed for each container type.
Allow units should be de�ned by each project.

7. Functional containers should support the inclusion of uncertainty data within the functional con-
tainer.

8. The speci�cation for each data container shall state whether that container is extensible. If the
container is extensible, the speci�cation shall de�ne the process for extending the container.

6 Character encoding and various character sets

While many meta-languages can be used for storing the general-purpose data containers, this article
focuses on text-based storage which is platform independent and easily shareable. The general-purpose
data containers use the UTF-8 character encoding [8] for text 9. UTF-8 was chosen because it is now the
most commonly used character encoding for the World-Wide-Web [8], because of its ability to represent
characters from a wide variety of languages and because it is backwards compatible with the ASCII [7]
character set.

This section de�nes various character sets that are subsets of the 128 characters of the ASCII
character-encoding scheme. While most of these subsets, if not all, are well known, it is worth repeating
them so their de�nitions are clear. The speci�cations in this article will in some places restrict the
allowed set of characters that can be used to one or more of the following subsets:

6.1 Letter characters subset

In this article, characters from the letters subset along with several other character subsets are the
only characters allowed for constructing tag and attribute names (see Sections 7.2.1). The GPDCs use
the ISO basic Latin alphabet [9] for its letter subset. This consists of 26 uppercase and 26 lowercase
letters. The uppercase letters are the following 26 ASCII characters: `A', `B', `C', `D', `E', `F', `G', `H',
`I', `J', `K', `L', `M', `N', `O', `P', `Q', `R', `S', `T', `U', `V', `W', `X', `Y', and `Z'. These characters are
encoded in the ASCII character set as the base 10 integers 65 to 90, respectively. The lowercase letters
are the following 26 ASCII characters: `a', `b', `c', `d', `e', `f', `g', `h', `i', `j', `k', `l', `m', `n', `o', `p', `q',
`r', `s', `t', `u', `v', `w', `x', `y', and `z'. These characters are encoded in the ASCII character set as the
base 10 integers 97 to 122, respectively.

6.2 Arabic digits character subset and numbers

A number can be an integer or a real number. This section de�nes the characters needed for constructing
a number.

9Encoding for numbers can be meta-language speci�c. For example, some meta-languages use binary, and not text,
encoding. However, when a number is represented in text, it must follow the format given in Sections 6.2 and 7.3.
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The main characters in a number are the ten Arabic numerals which consist of the 10 characters:
`0', `1', `2', `3', `4', `5', `6', `7', `8', and `9'. These characters are encoded in the ASCII character set as
the base 10 integers 48 to 57, respectively.

In addition to the ten Arabic numerals, integers and real numbers need the plus (i.e., `+') and minus
(i.e., `−') characters. These characters are encoded in the ASCII character set as the base 10 integers
43 and 45, respectively. For real numbers the period character (i.e., `.') is needed. This character is
encoded in the ASCII character set as the base 10 integer 46. The e-form (see Section 3.5) needs the
additional characters `e' and `E' as de�ned in the letter subset.

6.3 Underscore

It is also useful to list the underscore character (i.e., `_') which in the ASCII character set is the base
10 integer 95.

7 Basic data types

We divided data types into three classes: text, numbers and others. Also, this discussion will only
consider ASCII and UTF-8 [8] representations of the various data types and their representation in
XML That is, binary representation of numbers are not de�ned in this article as we are only concerned
with their ASCII representation in a �le. Text data types will be described �rst, then numbers and
�nally others.

7.1 Text data needs

For the design of an XML general-purpose data container, four text types need to be de�ned. These
types can be understood by noting the basic structure of an XML document. The main component of
an XML document is an element. An element contains 1 to 3 parts and they are:

• The name of the element also called the tag, which herein is called the tagName. All elements
have a tagName.

• The attributes of the element, comprised of a list of 0 or more attributes. Each attribute is
a key/value pair. Herein, the key is called the attributeName and the value is called the
attributeValue.

• The body (or content) of the element. The body is optional. If present, it can contain text and/or
other elements interspersed. The text component of the body is herein called the bodyText.

Hence, the four text types for an XML document are tagName, attributeName, attributeValue
and bodyText. Some simple examples of an element are:

<tagName/>

<tagName attributeName="attributeValue"/>

<tagName attributeName="attributeValue"></tagName>

<tagName attributeName="attributeValue">BODY</tagName>
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All tagName, attributeName and attributeValue text types are case sensitive. For example,
the only allowed Boolean true value is `<true/>' (see 7.7.3); neither `<True/>' nor `<TRUE/>' is an
allowed value. There is one exception and that is for �oating point value (see Section 3.5). In a �oating
point value the exponent designator can be either an `e' or `E' (e.g., both `1e3' and `1E3' are allowed
and are equivalent).

XML is very liberal in the characters that are allowed for tagName and attributeName. To allow
for better association between meta-languages' names and programming variable names, it is best to
restrict the allowed characters (see the "Best Naming Practices" in ref. [6]). In addition, the allowed
character set for tagName and attributeName should probably be the same. Herein their character
set will be generically called XMLName.

7.2 Description of text types

This section de�nes the XMLName, attributeValue and bodyText types. This section de�nes
additional text types that are useful for the table and values containers. These additional types are
UTF8Text, printableText, quotedText and tdText.

7.2.1 XMLName

(tagName and attributeName)

XMLName represents the set and sequence of characters that are allowed for tag and attribute names.
Some meta-languages and programming languages (e.g., C and Python) allow a name to start with the
underscore character. While other programming languages (e.g., FORTRAN) do not. For maximum
compatibility an XMLName text shall not start with an underscore character.

Allowed characters: XMLNames shall begin with a character from the ISO basic Latin alphabet
(see Section 6.1). All other characters shall be from the following: ISO basic Latin alphabet, Arabic
numerals, and/or an underscore. There is no limit on the length of a name, except that it shall contain
at least 1 character.

7.2.2 attributeValue

This represents the set and sequence of characters that are allowed for attribute values.

Allowed characters: The allowed values for an attribute will depend on the attribute/element and in
general, should be speci�ed by the project de�ning the attribute/element. A project can use any UTF-8
character in a value deemed necessary. However, some general rules apply:

• If a value of an attribute is an Integer32, UInteger32, Float64 or other de�ned type then it shall
follow the speci�cation for an Integer32, UInteger32, Float64 or the other de�ned type, respectively
(see Sections 7.4, 7.5 and 7.6).

• If any part of the value of an attribute is an Integer32, UInteger32, Float64 or other de�ned type
then that part shall follow the speci�cation for an Integer32, UInteger32, Float64 or the other
de�ned type, respectively.

For example, if an attribute value contains a Float64 with units, as in `mass=�3.2 kg� ', the numeric
part of the attribute value shall follow the Float64 speci�cation.
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7.2.3 bodyText

Allowed characters: In general, any UTF-8 character is allowed. However, the allowed characters for
an element's body can be limited by its parent element's speci�cations.

7.2.4 UTF8Text

This is text composed of any sequence of UTF-8 characters.

Allowed values: Any sequence of 0 or more UTF-8 characters.

7.2.5 printableText

This is text composed of only the printable ascii characters.

Allowed values: Any sequence of the ascii characters between the space character (decimal 32) to the
tilde character (' ' or decimal 126) inclusive.

7.2.6 quotedText

This represents a UTF8Text that is contained between two matching quote characters. The allowed
quote characters are the ascii double quote character (i.e., " or decimal 34) and the ascii single quote
character (i.e., ' or decimal 39).

Allowed values: A UTF8Text contained between matching single or double quote characters.
For example, the quoted string "abc 123 xyz" is expressed as

"abc 123 xyz"

or

'abc 123 xyz'

This is not the same as

'abc 123 xyz '

as leading and trailing spaces are part of the string.

7.2.7 tdText

This represents a UTF8Text that is contained between the XML start and end elements that de�ne a
standard html table cell (i.e., "<td>" and "</td>").

Allowed values: The XML element "<td>" and the UTF8Text it contains.
For example, the quoted string "abc 123 xyz" is expressed as

<td>abc 123 xyz</td>

This is not the same as

<td> abc 123 xyz</td>

as leading and trailing spaces are part of the string.
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7.3 Description of number types

This section de�nes some common number types relevant for computer programming and storage. The
types de�ned here are the commonly used number types. Additional types can be de�ned by each
project. The following contains some rules that a project should consider when de�ning number types.
For many computer languages it is important to de�ne the form and size allowed for various types of
numbers.

In general, an ASCII integer should not start with the `0' character unless its value is zero. Disal-
lowing a `0' character as the �rst character in a non-zero integer is desirable since some programming
languages interpret an integer starting with a 0 as an octal value. For example, in Python 2 the com-
mand `int( 077 )' returns the base 10 value 63 (note, just to confuse things, the command `int( "077"
)' returns the base 10 value 77 and `eval( "int( %s )" % "077" )' returns the base 10 value 63).10

Furthermore, it is best that an ASCII representation of an integer not contain a decimal point (i.e.,
`.') or be stored using the �oating-point e-form. For example, the integer value `123456' should not be
represented in any of the forms shown in Table 9.

Table 9: Examples of invalid integers.
Invalid representation Reason

`123456.' `.' not allowed.

`1.23456e5' `.' and e-form not allowed.

`12345600e-2' e-form not allowed.

There are two reasons for not allowing the decimal period (i.e., `.') or the e-form when storing integers in
ASCII form. Firstly, programming languages have functions for converting an ASCII string to an integer,
such as the int function in Python. In general, these functions fail when the string representation of an
integer contains a `.' or is an e-form. A few examples are given below for the programming languages
Python, C and FORTRAN.

Python programming example:

k = int( "120." ) # A Python Exception is raised by the int function.

C programming example:

int i = -1, j = -1, k = -1;

k = sscanf( "120. 14", "%d %d", &i, &j ); # Only the first value is converted

# (i.e., k = 1, i = 120 and j = -1).

k = sscanf( "120e-1 14", "%d %d", &i, &j ); # Only one value is converted and it

# is incorrect (i.e., k = 1, i = 120 and j = -1).

FORTRAN programming example: The FORTRAN programming language does appear to translate
integers containing a `.' or an e-form representation correctly provided the integer value can be expressed
in the bits of the �oating-point representation.

10To confuse the issue even more, in Python 3 the command `int( 077 )' raises a SyntaxError exception. Octal values
in Python 3 must start with `0o', as in `int( 0o77 )'.
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The second reason to avoid using `.' or an e-form in integer values is that some programmers use
�oating-point types to manipulate integers in their codes. Often, this yields �oating-point values that
are not integers. For example, consider the following Python code:

a = 5

b = 7

inv_a = 1. / 5

i = 7

c = b * a * i * ( inv_a / i )

print "%.17e" % c, c / b - 1, int( c )

which prints,

7.00000000000000089e+00 2.22044604925e-16 7

while replacing the assignments for `a' and `i' with `a = 3' and `i = 11', it prints

6.99999999999999911e+00 -1.11022302463e-16 6

Mathematically both value are exactly 7, but as can be seen from the examples above, not all calculated
values are exactly 7, and the latter assignments yield 6 when converted to an integer.

In the ENDF/B-VII.0 [3] release, there are many instances where integer multiplicities are stored
as non-integer values (i.e., �oating point representation). For example, in the 242Am evaluation the
multiplicity for neutrons for reaction MT 16 (n,2n) has 37 energy dependent values for the multiplicity.
All the values use a special FORTRAN `e'-less format which looks like the e-form (see 3.5 but does
not contain the `e' (e.g., `1.999963+0' instead of `1.999963e+0). None of these multiplicities can be
converted to an integer using the Python command `int( m )' where m is one of the values even when
the `e' is inserted back into the string. Only four converted to 2 with the Python command `int( �oat(
m ) )' - with the `e' reinserted - while all the others convert to 1.

While it is impossible to restrict coders from working with non-integer types in their codes, the onus
of converting an integer from a code's representation to ASCII (the writer) or vice-versa (the reader)
should fall on the writer of the number. This makes the proper interpretation of the integer trivial for
the many readers.

Furthermore, if a reader wishes to input an integer as a �oat, the integer value will be properly
represented as long as the value has less digits than the number of signi�cant digits in the �oat. For
example, converting the integer `123456' to a Float64 (see below) and then to an Integer32 will produce
the correct value, but converting `123456789' to a Float32 and then to an Integer32 will not. FORTRAN
converts the string `123456789' to 123456792 without raising a warning11.

If integer representations are restricted to not containing leading zeros (unless the value is equal to
zero) and the �oating-point form is not allowed, then each positive integer has two possible representa-
tions (since the `+' is optional), while each negative integer has exactly one representation.

11All Integer32 values can be represented exactly as Float64 values.
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7.4 Integer32:

This represents the allowed set and sequence of characters, and values that are allowed for a 32-bit
signed integer.

Allowed values: Any integer in the range [ −231 to 231 ) - note that the lower limit is inclusive and the
upper limit is exclusive. The minimum allowed value (i.e., −231 = -2147483648) is de�ned to be Inte-
ger32_Min and the maximum allowed value (i.e., 231 - 1 = 2147483647) is de�ned to be Integer32_Max.
The Python regular expression (see section B) for an Integer32 shall be

`[+-]?([1-9][0-9]*|0+)'

with the restriction that the value shall be in the range [Integer32_Min, Integer32_Max].

C programming equivalent: int32_t

7.5 UInteger32:

This represents the allowed set and sequence of characters, and values that are allowed for a 32-bit
unsigned integer.

Allowed values: Any integer in the range [ 0 to 232 ). An unsigned integer is represented in the same
way as a signed integer, with the exception that a minus sign (e.g., `-') is not allowed). The minimum
allowed value (i.e., 0) is de�ned to be UInteger32_Min and the maximum allowed value (i.e., 232−1) is
de�ned to be UInteger32_Max. The Python regular expression (see section B) for an UInteger32 shall
be

`+?([1-9][0-9]*|0+)'

with the restriction that the value shall be in the range [UInteger32_Min, UInteger32_Max].

C programming equivalent: uint32_t

7.6 Float64:

This represents the allowed set and sequence of characters, and values for a 64-bit �oating point number.

Allowed values: Any normalized or denormalized IEEE-754 binary64 [5] value. The Python regular
expression (see section B) for a Float64 shall be

`[+-]?([0-9]+\.?[0-9]*|\.[0-9]+)([eE](+|-)?[0-9]+)?'

with the restriction that the value shall only be in the range for a normalized or denormalized IEEE-754
binary64 value. The number of signi�cant digits (base 10) in a normalized IEEE-754 binary64 value is
about 16, and is fewer for a denormalized value. The string representation of a Float64 value can have
more signi�cant digits than are supported by a normalized or denormalized IEEE-754 binary64 value;
however, these additional digits will generally be ignored when the value is read into a Float64 variable.

C programming equivalent: double
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7.7 Description of other data types

7.7.1 whiteSpace

This represents the allowed set and sequence of characters for a white space.

Allowed values: Any of the characters shown in Table 10.

Table 10: Valid white spaces and their ASCII characters.
character name escape sequence ASCII decimal value

space ` ' 32

tab `\t' 9

linefeed `\n' 10

vertical tab `\v' 11

formfeed `\f' 12

carriage control `\r' 13

discussion point Or, maybe it should be restricted to the characters shown in Table 11 to
comply with JSON (JavaScript Object Notation) [10].

Table 11: Valid JSON white spaces and their ASCII characters.
character name escape sequence ASCII decimal value

space ` ' 32

tab `\t' 9

linefeed `\n' 10

carriage control `\r' 13

7.7.2 Sep

This represents the allowed set and sequence of characters that separate values in a list inside many
of the general-purpose data containers. Several of the containers have a sep attribute that de�nes the
separator for each data instance.

Allowed values:

• One or more white spaces (if allowed by the meta-language) or

• any character (e.g., a comma (",")) de�ned by a project with an arbitrary number of white spaces
before and after it.

discussion point The meta-language JSON requires that the comma character shall be used to
separate objects in its array and object types.

discussion point A proposal was made to support more than one type of separator. However,
this puts an additional burden on software reading the data. Tools like Python's "split" function,
Matlab's "dlmread", and the c++ "std::getline" do not directly support multiple delimiters.
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7.7.3 Boolean

This represents the allowed set and sequence of characters that represent the Boolean true and false
values in general-purpose data containers.

Allowed values: For attributeValues the allowed strings are `true' and `false'. For a table cell, the
allowed values are `<true/>' and `<false/>'.

As a note, the standard XML representation for Boolean values true and false are `true' and `false'
respectively.

7.7.4 Empty

This is the token that states that the value of the cell in a table is empty.

Allowed values: The ASCII string `<td/>'.

7.8 Some additional types to consider

Below is a list of types that are supported by most, if not all, programming languages but are currently
are not used by the GPDCs. They are listed so as not to be ignored.

7.8.1 Integer64

This represents the allowed set and sequence of characters, and values for a 64-bit signed integer.

Allowed values: Any integer in the range [ −263 to 263 ). The minimum allowed value (i.e., −263) is de-
�ned to be Integer64_Min and the maximum allowed value (i.e., 263−1) is de�ned to be Integer64_Max.
The Python regular expression (see section B) for an Integer64 shall be

`[+-]?([1-9][0-9]*|0+)'

with the restriction that the value shall be in the range [Integer64_Min, Integer64_Max].

C programming equivalent: int64_t

7.8.2 Float32

Comments: Since only ASCII representation of data types is being considered here, and since Float32
is a subset of Float64, this is probably not needed. Currently not de�ned.

discussion point Even though we are only giving ASCII representation here, we could de�ne
some �ag meaning "can be safely stored as Float32 without loss of precision."

7.8.3 Octal

Comments: Currently not needed so not de�ned.
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7.8.4 Hexadecimal

Comments: Currently not needed so not de�ned.

8 General-purpose data containers fundamentals

The requirements for the general-purpose data containers are listed in Section 5. The general-purpose
data containers are speci�ed in Sections 9 through 21. This section describes common features found
in many of the general-purpose data containers.

8.1 Descriptions of speci�cations

The speci�cations below are for XML formatted data. The fundamental entity in XML is the element.
An element has a tag or name, a list of attributes (i.e., meta-data) and text (also called body) and/or
nested elements. For each container, the speci�cations shall de�ne the tag name, list of allowed at-
tributes, list of allowed nested elements and text (body). For each attribute, the speci�cations shall
de�ne the allowed values and whether the attribute is required or optional and, if relevant, if it has a
default value. A required value does not have to be speci�ed if it has a default value.

8.2 Interpolation

The GPDCs employ the ENDF interpolation scheme as it is more general than the interpolation scheme
commonly used in science and engineering. In the common or "traditional" interpolation, each axis has
an interpolation rule that de�nes how to interpolate its variable along its axis. Consider, for example,
the function f(x, y) with linear ('lin') interpolation along the x-axis, logarithm ('log') interpolation
along the y-axis and '�at'12 interpolation along the z-axis. Between any two consecutive x values, the
interpolation for the z value is '�at' as it also is for any two consecutive y values. There is, in this
scheme, no way to have a di�erence interpolation rule for z-axis depending on which independent axis
is being interpolated (e.g., for the x- and y-axis in the example).

In the ENDF interpolation scheme, interpolation rules are de�ned for each independent axis and
that rule speci�es the interpolation rule for that independent axis and the dependent axis while that
independent axis is being interpolated. No interpolation is de�ne for the dependent axis as its inter-
polation is give for each independent axis. This scheme allows for a di�erent interpolation rule for the
dependent axis, depending on which independent axis if being interpolated. In this scheme, two inter-
polation values are typically required for each independent axis: one for the independent axis and one
for the dependent axis (e.g., 'lin,lin', 'lin,log'). In the "traditional" interpolation example above, the
interpolation rule for the x-axis is 'lin,�at' and for the y-axis it is 'log,�at'. For a dataset representing
f(x, y), the ENDF interpolation allows, for example, the x-axis interpolation rule to be 'lin,log' while
the y-axis rule is 'lin,lin'. That is, for xi ≤ x ≤ xi+1 and for the y = yj , f(x, yi) is interpolated as

f(x, yi) = f(xi, yj) exp

(
log

(
f(xi+1, yj)
f(xi, yj)

)(
x− xi

xi+1 − xi

))
(1)

while for yj ≤ y ≤ yj+1 and for the x = xi, f(xi, y) is interpolated as

12Flat interpolation is also called 'constant' or 'histogram' interpolation.
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f(xi, y) = (f(xi, yj+1)− f(xi, yj))

(
y − yi

yj+1 − yj

)
− f(xi, yj) . (2)

Many of the containers have an interpolation attribute. In general, the value for an interpolation
attribute can be speci�ed by each format project. However, several prede�ned values are listed in
Table 12.

Table 12: Prede�ned interpolation strings. The �rst four strings contain two sub-strings separated by
the comma character (e.g., `,'). The sub-string to the left of the comma is the interpolation for the
independent axis while the sub-string to the right of the comma is the interpolation for the dependent
axis.

string de�nition

"lin,lin" The independent and dependent axes are linearly interpo-
lated.

"log,lin" The independent axis is logarithmically interpolated and the
dependent axis is linearly.

"lin,log" The independent axis is linearly interpolated and the depen-
dent axis is logarithmically.

"log,log" The independent and dependent axes are logarithmically in-
terpolated.

"�at" The dependent value between consecutive x values is con-
stant, equal to the dependent value at the lower x value.

In addition to an interpolation attribute, the nuclear data community requires an interpolation
quali�er to produce physical results when interpolating a distribution (e.g., P (µ,E′|E)). For this
discussion, the details of why the interpolation quali�er is needed is not important nor is how it is
used. What is important is that if the interpolation quali�er is added as part of the interpolation
attribute, parsing of the interpolation is required to limit the number of interpolation values. For
example, an interpolation quali�er required for nuclear data is called 'unitBase' interpolation. As all
the interpolations listed in Table 12 can occur with or without 'unitBase' interpolation (e.g., 'lin,lin' and
'unitBase,lin,lin'), de�ning a new string for each interpolation rule in Table 12 adds 5 more interpolation
rules. And, each additional interpolation quali�er adds 5 more interpolation rules. A better way to
handle interpolation quali�ers is to add an additional attribute. In GPDCs, containers that require an
interpolation quali�er have an attribute called interpolationQuali�er.

8.3 Types of containers

The containers can be divided into several types.

basic containers: These containers store either text or numbers. The basic containers are text
(Section 9), values (Section 12) array (Section 13) and table (Section 21).

axes containers: These containers are used to specify information about an axis representing a vari-
able. For example, for the function x0(x1), the variables x0 and x1 each require axis information.
The axes containers are axis (Section 11) and axes (Section 10)
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functional containers: These containers store data representing single-valued13 functions of the
form f(x), f(x, y), f(x, y, z), etc or in the generic functional expression used in this article and n-
dimensional function is x0(xn, ...x2, x1). These are known as 1-, 2-, 3- and n-dimensional functions
(for n > 3). The functional containers are XYs (Section 14), series (Section 15), multiD_XYs
(Section 16), regions (Section 17), and gridded (Section 18).

uncertainty containers: These containers allow for the storing of uncertainty data that is associ-
ated with a functional container. The uncertainty containers are uncertainty (Section 19) and
uncertainties (Section 20)

8.4 Common attributes

All the container have the following optional attributes:

index This is an integer and should be used to sort like container when embedded in another element.
For example, whenever n-dimensional functional containers are embedded in an (n+1)-dimensional
functional container, each embedded container shall have an index attribute, indexed sequentially
starting at 0.

label When a container is embedded in another container, the parent may de�ne the allow values
for the embedded containers label attribute. Otherwise, projects are allowed to de�ne allowed
values.

style When a container is embedded in another container, the parent may de�ne the allow values
for the embedded containers style attribute. Otherwise, projects are allowed to de�ne allowed
values.

While these common attributes are optional, they may be required for a container when it is em-
bedded in other container.

8.5 Functional common attributes

In addition to the common attributes, all functional containers have the following attributes:

value For an n-dimensional function, this is its associated xn+1 value.

valueType This is the type of the value attribute.

9 text container

This container stores a list of characters. This container can be used to store documentation, for
example.

13Except for the regions container which allows for a discontinuity.
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9.1 Speci�cations

Tag: text

Attributes: The list of allowed attributes are:

index: [Integer32, optional] De�ned by the parent element.

label: [UTF8Text, optional] De�ned by the parent element.

style: [UTF8Text, optional] De�ned by the parent element.

encoding: [UTF8Text, default is 'ascii'] One of 'ascii', 'utf8'.

markup: [UTF8Text, default is 'none'] One of 'xml', 'xhtml', 'latex' or other markup de�ned by
a project.

length: [Integer32, optional] The number of encoded characters.

Body: The list of characters.

9.2 Examples

Example 1: Text representing the latex markup for α× x3/2.

| <text markup="latex">$\alpha \times x^{3/2}$</text>

Example 2: Same as example 1 but with the text wrapped using the special XML CDATA14 section
(i.e., the text between '<![CDATA[' and ']]>').

| <text markup="latex"><![CDATA[$\alpha \times x^{3/2}$]]></text>

10 axes container

Many of the data containers represent functions that have independent and dependent axes. The axes
element provides a way to assign a label and unit to each axis. If an axes element is present, each
independent and dependent axis must have an axis element. The axis elements are indexed 0 to n
where n is the number of independent axes. For the function x0(xn, ..., x1), index 0 is for dependent
axis x0, 1 is for independent axis x1, ... and n is for the independent axis xn.

10.1 Speci�cations

Two types of axes elements are allowed. One type gives an xlink to another axes element and has the
form:

<axes xlink:href="/link/to/another/axes/element"/>

14An XML CDATA section is need whenever a string contains characters that are normally reserved for xml markup,
such as '<', '>', '/', and '&'".
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The second form is

Tag: axes

Attributes: The list of allowed attributes are:

index: [Integer32, optional] De�ned by the parent element.

label: [UTF8Text, optional] De�ned by the parent element.

style: [UTF8Text, optional] De�ned by the parent element.

Body: The list of axis elements. One required for each independent and dependent axes.

11 axis container

This container stores an index, label, style and unit for an axis. Depending on the style, a grid for the
axis can also be stored.

11.1 Speci�cations

Tag: axis

Attributes: The list of allowed attributes are:

index: [Integer32, required] An integer that indicates which independent/dependent axis this
axis element belongs to as de�ned in Section 10.

label: [UTF8Text, required] The label for the axis.

style: [UTF8Text, default='none'] A string denoting the type of grid associated with this axis.
Allowed values are 'none', 'points', 'boundaries' and 'parameters'.

unit: [UTF8Text, optional] The unit for the axis.

interpolation: [UTF8Text, contingent] De�nes the interpolation to be used between consecu-
tive domain points along this axis. Contingency: required when axis' style is 'points' or
'boundaries' and interpolation is other than 'lin,lin'.

interpolationQuali�er: [UTF8Text, contingent] Contingency: required when axis' style is
'points' or 'boundaries' and interpolationQuali�er is other than 'none'.

Body: The list of allowed elements are:

values: Required when axis' style is other than 'none'.

11.2 Examples

Example 1: An axes element for multiplicity as a function of energy (i.e., m(E)):

| <axes>

| <axis index="1" label="energy_in" unit="eV"/>

| <axis index="0" label="multiplicity" unit=""/></axes>
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Example 2: An axes element for P (µ|E):

| <axes>

| <axis index="2" label="energy_in" unit="eV"/>

| <axis index="1" label="mu" unit=""/>

| <axis index="0" label="P(mu|energy_in)" unit=""/></axes>

Example 3: An axes element for P (µ|E) where the x2 (i.e., E) and x1 (i.e., µ) have style="points"
and the x2 axis has "log,lin" interpolation:

| <axes>

| <axis index="2" label="energy_in" unit="eV" style="points">

| <interpolation value="log,lin"/><values> ... </values><axis>

| <axis index="1" label="mu" unit="" style="points">

| <values> ... </values><axis>

| <axis index="0" label="P(mu|energy_in)" unit=""/></axes>

12 values container

Data containers have meta-data and data. In most cases the data have three common meta-data. These
are 1) the number of data values (i.e., its length), 2) the type of data and 3) the character used to
separate consecutive values (i.e., the sep character). For this reason, many of the containers store their
data in a values container where, if needed, these three meta-data are stored. This container also
allows for compressing leading and trailing zero data. If the start attribute is de�ned, it speci�es the
�rst non-zero data value. If the sum of the start and length attributes is less than the value of the size
attribute, then the the size value represents the total number of data values where all non-speci�ed
values are zero. All data in this container must be of the same type and separated by 'sep'.

12.1 Speci�cations

Tag: values

Attributes: The list of allowed attributes are:

index: [Integer32, optional] De�ned by the parent.

label: [UTF8Text, optional] De�ned by the parent.

style: [UTF8Text, optional] De�ned by the parent.

length: [Integer32, optional] Number of data stored in the body of the container.

type: [UTF8Text, default is "Float64"] Speci�es the type of data in the body (e.g., Integer32,
Float64). Only one type of data can be stored in each instance of a values container.

sep: [FIXME, default is " " (i.e., the space character)]: The character used to separate entities
in the body.

start: [Integer32, default is "0"] For start="N", the �rst N values are zero and are not stored.
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size: [Integer32, contingent] The total number of data values including leading and trailing zero
values that are not stored. Contingency: required when the sum of start and length do not
added to the total number of data values.

Body: The body contains the data for the parent container.

12.2 Examples

Example 1: values container representing the �oating point numbers 1.2, 3.2 and 2.3.

| <values length="3" sep="," type="Float64"> 1.2, 3.2, 2.3</values>

Example 2: values container representing the �oating point numbers 0, 0, 0, 0, 0, 1.2, 3.2 and 2.3.

| <values start="5" length="3" sep="," type="Float64"> 1.2, 3.2, 2.3</values>

Example 3: Same as Example 2 but with no length attribute and uses of the default sep and type
attributes.

| <values start="5> 1.2 3.2 2.3</values>

Example 4: values container representing the �oating point numbers 0, 0, 0, 0, 0, -1.2, 7.3, 2.3, -11,
0, 0 and 0.

| <values start="5" length="4" size="12">-1.2 7.3 2.3 -11</values>

13 array container

The array container stores numeric data on a multi-dimensional grid. An array of dimension n is a
list containing one or more n-1 dimensional arrays which must all have the same shape (see de�nitions
below). Each of those in turn contain a list of n-2 dimensional arrays, and so on down to the 0-
dimensional array which is a number.

For an n-dimensional array with Ni grid points on the ith dimension (where i ranges from 1 to n),
there are Nn ×Nn−1 × · · · ×N2 ×N1 total values of the array. The most commonly used array is the
matrix (i.e., the 2-dimensional array).

Arrays are used frequently in nuclear data, whenever the underlying data are stored on a uniform
grid. For example, a covariance matrix can be stored in a 2-dimensional array while a transfer matrix
(for use in deterministic transport codes) requires a 3-dimensional array. While the simplest way to
store an array is to explicitly list all the values, substantial space savings can often be achieved by using
various compression strategies. One example where compression is valuable in a nuclear data evaluation
is the 232Th resonance parameter covariance matrix found in the ENDF-VII.1 [4] neutron sub-library,
MF=32 MT=151. The matrix shape is 2781 × 2781, yet only about 9000 of these values (0.1% of the
matrix) are non-zero. If we assume that each zero is stored using two units of ASCII storage including
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the separator (i.e., ` 0'), and also assume that each non-zero value takes up a total of 24 units, then the
zero values will require about 2781× 2781× 2 / (9000× 24), or about 71, times more memory than the
non-zero values occupy. It is therefore bene�cial that the array data container be designed to allow for
storing various compression schemes.

13.1 De�nitions

shape: the shape of an n-dimensional array is a list of n integers representing the number of values
(i.e., length) along each dimension. For example, shape=`4,3,6' is a 3-dimensional array with 4
values along the �rst dimension, 3 values along second dimension and 6 values along the third
dimension. An array with shape=`5' represents a 1-dimensional list with indices ranging from 0
to 4 inclusive. The length of the shape is equal to the number of dimensions in the array.

size: The size of an array is the total number of values it contains. The size is equal to the product of
the length of each dimension: for an array with shape `4,6,3', the size is 4× 6× 3 or 72.

storage order: The storage order determines how an array is laid out in contiguous memory. For
example, the 2× 3 array

C =
1 2 3
4 5 6

could be laid out either with the rows stored one after another as `1 2 3 4 5 6' (this is known as
row-major storage order) or with the columns stored one after another as `1 4 2 5 3 6' (column-
major storage order). More generally, for an n-dimensional array, row-major storage means that
the right-most array index (see array indexing description below) changes fastest in contiguous
memory, followed by the second-to-right-most and so on. Column-major storage means that the
left-most index changes fastest, followed by second-to-left-most and so on.

�attened array: Flattening an n-dimensional array means converting it into a 1-dimensional array
with the same total number of elements as the original. The order of those elements depends on
the array's storage order. For example, �attening array C (above) produces a 1-d array with six
elements. Those elements are 1 2 3 4 5 6 if the storage order is row-major, or 1 4 2 5 3 6 if the
storage order is column-major.

array indexing: A list of integer indices can be used to point to any value in an array, or to a sub-array
within an array. For an n-dimensional array, the index list contains from 1 to n distinct indices
(e.g., [in, in−1, ..., i2, i1]). Each item in the index must be a non-negative integer, and must be less
than the length of the array along that dimension. Indexing is 0-based. For compactness, arrays
are often stored as a list of values with implicit demarcation. For example, an array of shape
`3,4' that uses row-major storage order may store its 12 values as the string `v1, v2, v3, v4, v5,
v6, v7, v8, v9, v10, v11, v12' (here v1 symbolically represents the �rst value and so on). The
�rst value v1 is indexed as array[0][0], the second value v2 as array[0][1] and the last value v12
as array[2][3]. Indexing this array with only the index 1, as in array[1], yields the 1-dimensional
array `v5, v6, v7, v8' of shape `4'. This is the same array indexing notation used for the C and
Python programming languages.

The element pointed to by an array index does not depend on storage order: in the example above,
array[1,2] points to v7 no matter whether the array is stored as row-major or column-major.
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Two indexing notations are used and are equivalent. The �rst notation lists the indices as comma
separated values enclosed between `[' and `]'. For example, array[3, 2, 4]. The second notation lists
each index enclosed between `[' and `]' (this is the notation used in the C programming language).
The prior example in this latter notation is array[3][2][4]. For more details on arrays and array
indexing please see http://en.wikipedia.org/wiki/Array_data_structure.

storage: An array may contain many values that are 0, and/or it may be symmetric or anti-symmetric
about the diagonal. In these cases, the array can often be stored more e�ciently (i.e., compressed)
by using sparse and/or symmetric forms. The array container includes optional compression,
triangular and permutation attributes describing the compression strategies (if any) used to
reduce storage size.

compression: The following compression types are de�ned:

none: every value is listed explicitly (unless the triangular attribute is other than `none';
see below).

diagonal: if most non-zero values in an array lie on or near the diagonal, the array can often
be stored more e�ciently by traversing along the direction of the array diagonal. The
simplest example is when all o�-diagonal elements in the array are zero, so that only
diagonal values need to be speci�ed. For an n-dimensional array with N values along
each dimension, only the values with indices [in, in−1, . . . , i2, i1] where i1 = i2 = ... = in
are stored. For example, to store a diagonal array with shape = `4,4,4', only the values
[0,0,0], [1,1,1], [2,2,2], [3,3,3] need to be stored.
discussion point Should `diagonal' arrays be allowed to have di�erent len-
gths along various dimensions? For example, if the only non-zero elements
in a 5x3 array are at [0,0], [1,1], [2,2], should we allow storing it as diagonal?
Diagonal storage is made more general by permitting the storage of o�-diagonal vectors
that lie parallel to the main diagonal, along with starting indices for each vector. For
arrays whose non-zero values lie near the diagonal15, diagonal storage can be an optimal
compression scheme. For example, the 2-dimensional array

C =

1 2 0 0
0 3 4 0
0 0 5 6
0 0 0 7

can be stored using diagonal compression as two vectors: [1 3 5 7] starting at indices
[0,0] and [2 4 6] starting at indices [0,1].
This array can be stored on disk using two values elements. One as its label attribute
set to startingIndices, contains the starting indices with length equal the number of
diagonal vectors times the number of array dimensions. The other has no label attribute
and contains the diagonal vectors with length equals the sum of the lengths of all diagonal
vectors. In the example above, the startingIndices are [0 0 0 1], and the values are [1 3
5 7 2 4 6]. For higher dimensions see the examples in section 13.3.

15For a 2-d array (i.e., a matrix) this is called a banded matrix.

http://en.wikipedia.org/wiki/Array_data_structure
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�attened: A general method for storing any sparse n-dimensional array is to start by �at-
tening the array so that there is only one index and then to de�ne three separate values
elements as: 1) starting indices in the new �attened array, 2) the number of values
(numberOfValues) that will be given following each starting index, and 3) the list of
values, whose length is equal to the sum of the numberOfValues values. For example,
consider the following matrix:

C =

1 −1 0 −3 0
−2 5 0 0 0

0 0 4 6 4
−4 0 2 7 0

0 8 0 0 −5

This matrix can be stored in a �attened array using three separate values elements as
(assuming row major storage order):

• �atIndices = 0, 12, 21, 24

• numberOfValues = 7, 7, 1, 1

• values = 1, -1, 0, -3, 0, -2, 5, 4, 6, 4, -4, 0, 2, 7, 8, -5

The �rst seven items in values correspond to the seven elements starting at index 0 of
the �attened array, the next seven items correspond to the seven elements starting at
index 12, and the last two items correspond to elements 17 and 20 respectively. Together
with the shape and storageOrder attributes, these three arrays completely describe
any n-dimensional array. In this example, some zeros appear in the values array. This
is not required, but if two non-zero values are separated by a single 0 this helps achieve
greater compression.

embedded: Some arrays can be e�ciently represented by breaking them into multiple sub-
arrays. For example, if the original array is

C =

1 2 0 0 0
3 4 0 0 0
0 0 5 6 7
0 0 8 9 10
0 0 11 12 13

(3)

it can be represented as two separate blocks:

C1 =
1 2
3 4

and C2 =
5 6 7
8 9 10

11 12 13

where C1 starts at indices (0,0) in the original array, and C2 starts at indices (2,2).
The embedded compression scheme allows decomposing arrays in this fashion. An
embedded n-dimensional array with shape = (Mn,Mn−1, ...,M1) contains 1 or more n-
dimensional sub-arrays. Each sub-array has its own shape (mn,mn−1, ...,m0) along with
starting indices (sn, sn−1, ..., s0) indicating where in the full array it begins. The shape
and starting indices of sub-arrays are constrained such that 0 ≤ sj ≤ Mj − mj along
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each dimension j (in other words, sub-arrays must be small enough to �t inside the full
array after being o�set by their starting indices).
For an n-dimensional array C containing K sub-arrays (labeled c0, c1..., cK−1), C can be
computed as follows:

C[in, in−1, ..., i0] =
K−1∑
k=0

w(k) ck[in − sn, in−1 − sn−1, ..., i0 − s0]

where the weight function w(k) is equal to 1 if sub-array k satis�es the condition 0 ≤
ij − sj ≤ mj along each dimension j, or equal to 0 otherwise. Any element of C not
covered by any of the sub-arrays is equal to 0. Sub-arrays cannot overlap.
Each sub-array can store data using any of the compression, triangular and per-
mutation attributes. Also, no restriction is placed on the storage order used by each
sub-array. However, each sub-array must contain the same data type as the parent array.
Embedded arrays are quite �exible, and o�er many di�erent ways of decomposing an
array into constituents. The choice of the best way to decompose any given array is left
up to the user.
discussion point Should we allow sub-arrays to have fewer dimensions than the
original? This adds some complexity since we would have to de�ne how to unpack
those smaller-dimension arrays into the full array. For example, if a 4x4 array has a 1-
dimensional sub-array with shape = (3) and starting indices = (1,1), does it get unpacked
along the rows or along the columns of the full array? Can this be determined from the
storageOrder attribute? Or, does the sub-array need to explicitly have 2 dimensions,
with shape = (3,1) or (1,3)?
I can think of some possible cases where it would be nice to use lower-dimensional
arrays inside an embedded array. For example, if the �rst 'sheet' of a 3x3x3 array is a
symmetric (or diagonal) 3x3 array, we can't store it as 3x3x1 and still take advantage
of the symmetry / diagonal nature since a (3x3) diagonal array is treated di�erently
from a (3x3x1) diagonal array (actually, right now we don't allow (3x3x1) arrays to be
diagonal, although that is another discussion point).

symmetry: An n-dimensional array is symmetric if

• the value at location [ in, in−1, · · · , i2, i1 ] is the same for all permutations of the indices
i1, i2, · · · , in.

For a 2-dimensional array, this reduces to the requirement that

• array[i2, i1] = array[i1, i2] for all combinations of i1 and i2.

An n-dimensional array is anti-symmetric if the value is multiplied by -1 when two indices
are interchanged.

For a 2-dimensional array, this reduces to the requirement that

• array[i2, i1] = -array[i1, i2] for all combinations of i1 and i2.

Symmetric and anti-symmetric arrays can be stored in a compact form by only listing one
permutation of the indices. Two common ways of storing symmetric arrays are triangular
lower-diagonal, where only the elements on and below the main diagonal are stored (i.e.,
indices with iM ≥ in−1 ≥ ... ≥ i2 ≥ i1), and triangular upper-diagonal, where only
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elements on and above the main diagonal are stored (i.e., indices with iM ≤ in−1 ≤ ... ≤ i2 ≤
i1).

For example, the following is a symmetric array with shape=`4,4'. In this example, array
indices are listed explicitly:

second index --> | 0 1 2 3

first index ---------------

| 0| 1 2 4 7

| 1| 2 3 5 8

\|/ 2| 4 5 6 9

3| 7 8 9 0

This array can be stored using triangular lower-diagonal symmetry as the list 1, 2, 3, 4, 5, 6,
7, 8, 9, 0 (assuming the storage order is row-major). That is, the lower-diagonal triangle
is:

1

2 3

4 5 6

7 8 9 0

The anti-symmetric array:

0 -1 2

1 0 1

-2 1 0

can be stored using the upper-diagonal as the list -1, 2, 1 . The zeros on the diagonal are
not stored.

The triangular attribute speci�es whether only the lower or upper hyper-triangle is stored.
The permutation attribute speci�es whether the array is symmetric (permutation="+1")
or anti-symmetric (permutation="-1"). If an array has only non-zero values in the lower or
upper hyper-triangle, it can be stored compactly by setting triangular appropriately and
with permutation="none".

13.2 Speci�cations

Tag: array

Attributes: The list of allowed attributes are:

index: [Integer32, optional] De�ned by the parent element.

label: [UTF8Text, optional] De�ned by the parent element.

style: [UTF8Text, optional] De�ned by the parent element.
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shape: [FIXME, required] a comma-separated list of integers representing the length of the array
along each dimension. The integer type is Integer32.

compression: [UTF8Text, default=`none'] �ag indicating whether a sparse storage scheme is
being used, and if so which scheme is used. Allowed value is one of the following: `none', `di-
agonal', `�attened' and `embedded'. Projects can also de�ne their own compression schemes.

triangular: [UTF8Text, default=`none'] Allows for storing values in only the upper- or lower-
diagonal hyper-triangle. If permutation is 'none', non-stored values are zero. Otherwise,
they are determine by the permutation attribute.

permutation: [UTF8Text, default=`none'] If triangular is other then 'none', this attribute
speci�es whether the permutation of two indices is +1 or -1. Allowed values are 'none', '+1'
'-1.

storageOrder: [UTF8Text, default=`row-major'] Indicates whether the data are stored in row-
major or column-major order (i.e., whether the last or �rst index is varying the fastest.
Allowed value are `row-major' or `column-major',

o�set: [FIXME, required if this array is nested inside an embedded array; not allowed other-
wise] gives the starting indices for a sub-array nested inside an array that uses embedded
compression. A comma-separated list of integers equal in dimension to the parent array. The
integer type is Integer32.

Body: A list of values elements that depends on the value of the compression attribute. The label
attribute of each values element designates the type of data stored that element. For the values
elements containing the data of the array, label shall not be speci�ed. For each values element
the index and style attributes shall not be used. The allowed values elements for di�erent
combinations are:

compression=`none': in this case the array only contains a values element that contains the
array data. The label attribute of the values element shall not be used. The number of
data in the values element depends on the array shape and the value of the triangular and
permutation attributes.

compression=`diagonal': if all o�-diagonal elements are zero, then the diagonal array only
needs to contain a values element, with size = N (the smallest array dimension). If some
o�-diagonal elements are included, then the array contains two values elements. One element
has label="startingIndices" and contains the starting indices. The other element contains
the array data and its label attribute shall not be used.

compression=`�attened': In this case the array contains three values elements. One element
contains the �at indices and has label="�atIndices". Other element contains the number of
values data and has label="numberOfValues". The third element contains the array data
and its label attribute shall not be used. The �atIndices and numberOfValues both shall
have data type Integer32, and must have the same size.

compression=`embedded': contains 0 or more child array elements. Each child array shall
have the same data type as the parent array, must have an o�set attribute, and must obey
size restrictions as described in section 13.1.
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13.3 Examples

The following are sample arrays showing how data are stored for several combinations of compression,
triangular and permutation attributes. Newlines are used in some of these examples to help the
reader visualize the arrays, but newlines are not required:

Example 1: an array used to store 1-dimensional data:

| <array shape="5">

| <values length="5"> 3.14 1.59 2.65 3.589 7.93 </values></array>

Example 2: a 2-dimensional array. In this example the compression and triangular attributes can
be omitted since they are both equal to the defaults:

| <array shape="4,4" compression="none" triangular="none">

| <values length="16">

| 1.1 2.7 3.6 0.0

| 2.7 4.8 0.7 0.2

| 3.6 0.7 5.4 0.1

| 0.0 0.2 0.1 3.6</values></array>

The same data can be stored more compactly by taking advantage of symmetry:

| <array shape="4,4" compression="none" triangular="lower"

| storageOrder="row-major">

| <values length="10">

| 1.1

| 2.7 4.8

| 3.6 0.7 5.4

| 0.0 0.2 0.1 3.6</values></array>

Example 3:

| <array shape="4,4" compression="none" triangular="none">

| <values length="16">

| 2.3 0 0 0

| 0 4.6 0 0

| 0 0 5.4 0

| 0 0 0 6.8</values></array>

This can be stored more compactly using the compression="diagonal" as:

| <array shape="4,4" compression="diagonal">

| <values> 2.3 4.6 5.4 6.8 </values></array>
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Example 4: 3-dimensional array with most non-zero elements near the diagonal. Stored �rst without
any compression as:

| <array shape="3,3,3">

| <values length="27">

| 1 2 0

| 0 3 0

| 0 0 0

|

| 0 0 0

| 0 2 3

| 0 0 4

|

| 0 0 0

| 0 0 0

| 0 0 3</values></array>

The same data can also be stored using diagonal compression as:

| <array shape="3,3,3" compression="diagonal">

| <values label="startingIndices" dataType="Integer32" length="9">

| 0 0 0

| 0 0 1

| 0 1 1 </values>

| <values>

| 1 2 3 <!-- diagonal array starting at 0,0,0 -->

| 2 3 <!-- -"- 0,0,1 -->

| 3 4 <!-- -"- 0,1,1 --></values></array>

Note that the main diagonal (starting at 0,0,0) has three values, while the other diagonals have 2 values.

Example 5: Sparse 3-dimensional array where all non-zero elements are found in one corner.

| <array shape="2,8,15" storageOrder="row-major"

| compression="flattened">

| <values label="flatIndices">97 111 221 235</values>

| <values label="numberOfValues" length="4">8 9 4 4</values>

| <values length="25">

| 12.2 6.431 0.983 2.121 8.7205 0.511 1.24e-3 4.24e-5

| 8.25 2.154 1.232 0.963 3.126 7.82e-2 6.18e-4 9.29e-6 1.23e-8

| 2.843 0.9261 6.23e-3 7.4502e-6

| 3.126 1.5723 0.3421 4.167e-4</values></array>

The same array can also be stored using embedded compression:
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| <array shape="2,8,15" compression="embedded">

| <array shape="1,2,9" offset="0,6,6">

| <values length="18">

| 0.0 12.2 6.431 0.983 2.121 8.7205 0.511 1.24e-3 4.24e-5

| 8.25 2.154 1.232 0.963 3.126 7.82e-2 6.18e-4 9.29e-6 1.23e-8

| </values></array>

| <array shape="1,2,5" offset="1,6,10">

| <values length="10">

| 0.0 2.843 0.9261 6.23e-3 7.4502e-6

| 3.126 1.5723 0.3421 4.167e-4 0.0 </values></array></array>

14 XYs container: a Tabulated x0(x1) functional

This container stores a single-valued function x0(x1) (i.e., y(x)) as a tabulated list of (xi, yi) pairs with
xi < xi+1.

14.1 Speci�cations

Tag: XYs

Attributes: The list of allowed attributes are:

index: [Integer32, contingent] De�ned by the parent element. Contingency: required when more
than one x0(x1) container can be embedded in another data container.

label: [UTF8Text, optional] De�ned by the parent element.

style: [UTF8Text, optional] De�ned by the parent element.

value: [determined by valueType attribute, contingent] Speci�es the value of x2. Contingency:
required when container is embedded in a higher dimensional functional container.

valueType: [UTF8Text, default="Float64"] Speci�es the data type of value.

interpolation: [UTF8Text, required] The interpolation rule along the x1 axis.

Body: The following containers are allowed in the body.

axes: [optional] The axes information for the data. For an embedded container, the axes element
is inherited from its parent container if not present.

values: [required] The speci�cations of the values element are given in Section 12.

uncertainties: [optional] Contains a list of uncertainty containers.

14.2 Examples

Example 1: A tabulated f(x) with (x, y) points (1e-5, 0), (1e-3, 0.12), (0.1, 2e-5), (1, 3.14e-5) and
(2e7, 4.3e-12).
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| <XYs interpolation="lin,lin">

| <values length="10">

| 1e-5 0 1e-3 0.12 0.1 2e-5 1 3.14e-5 2e7 4.3e-12</values></XYs>

15 series container:

This container stores a function x0(x1) (i.e., y(x)) as coe�cients of a polynomial sequence. That is, for
coe�cients Ci and polynomial sequence Pi(x), the function y(x) is de�ned as

y(x) =
iMax∑

i=iMin

Ci Pi(x) (4)

Prede�ned polynomial sequences are listed in Table 13.

Table 13: List of prede�ned polynomial sequences.
defaults

Name iMin domainMin domainMax series

polynomial 0 −∞ ∞ y(x) =
∑iMax

i=iMinCi x
i

Legendre 0 -1 1 y(x) =
∑iMax

i=iMinCi Pi(x) where Pi(x) is the
Legendre polynomial of order i.

This is a 1-dimensional functional x0(x1) container (i.e., it is a representation of a function of the form
x0(x1) or y(x)).

15.1 Speci�cations

Tag: series

Attributes: The list of allowed attributes are:

index: [Integer32, contingent] De�ned by the parent element. Contingency: required when con-
tainer is embedded in a higher dimensional container]

label: [UTF8Text, optional] De�ned by the parent element.

style: [UTF8Text, optional] De�ned by the parent element.

value: [determined by valueType attribute, contingent] Represents the x2 value for the container.
Contingency: required when embedded in a 2-dimensional functional container.

valueType: [UTF8Text, default="Float64"] Speci�es the data type of value attribute.

function: [UTF8Text, required] One of the names listed in Table 13 or a project-de�ned poly-
nomial series.

iMin: [Integer32, optional: default is 0] iMax is determined from the iMin and the size as
determined by the values element.
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domainMin: [UTF8Text, optional] y(x) is only valid from domainMin to domainMax. Must be
less than or equal to domainMax.

domainMax: [UTF8Text, optional] See domainMin.

Elements: The list of allowed elements are:

axes: [optional] The axes information for the data. For an embedded container, the axes element
is inherited from its parent container if not present.

values: [required] The speci�cations of the values element are given in Section 12. The numeric
values are the coe�cients Ci listed by consecutive order i starting with iMin.

uncertainties: [optional] Contains a list of uncertainty containers.

15.2 Examples

Example 1: An example for Legendre series is

| <series function="Legendre">

| <values length="4">1 0.1 -0.02 1.3e-5</values></series>

Example 2: The polynomial series

f(x) = 1 + 0.1x− 0.02x2 + 1.3× 10−5x3 (5)

can be represented as

| <series function="polynomial">

| <values length="4"> 1 0.1 -0.02 1.3e-5</values></series>

16 multiD_XYs container

This container stores the n-dimensional function x0(xn, ..., x1) for n > 1 as a list of (n-1)-dimensional
functions x0(xn−1, ..., x1). Each (n-1)-dimensional function stores its associated xn value in its value
attribute. The embedded x0(xn−1, ..., x1) containers are sorted by increasing xn. The index values are
incremented by 1 and the �rst embedded container has index 0.

16.1 Speci�cations

Tag: multiD_XYs

Attributes: The list of allowed attributes are:

index: [Integer32, contingent] De�ned by the parent. Contingency: required when container is
embedded in a higher dimensional container

label: [UTF8Text, optional] De�ned by the parent.

style: [UTF8Text, optional] De�ned by the parent.
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value: [determined by valueType attribute, contingent] Represents the xn+1 value for the con-
tainer. Contingency: required when embedded in a (n+1)-dimensional container.

valueType: [UTF8Text, default="Float64"] Speci�es the data type of value.

dimension: [Integer32, required] The dimension n of the function, equal to the number of inde-
pendent axes.

interpolation: [UTF8Text, default="lin,lin"] The interpolation rule along the xn axis.

interpolationQuali�er: [UTF8Text, default="none"] The interpolation quali�er.

Body: The list of the following containers:

axes: [optional] The axes information for the data. For an embedded container, the axes container
is inherited from its parent container if not present.

list of 2 or more [required] x0(xn−1, ..., x1) functional containers.

uncertainties: [optional] Contains a list of uncertainty containers.

16.2 Examples

Example 1: As an example, for an x0(x2, x1) function for P (µ|E), the XML representation would look
like:

| <multiD_XYs dimension="2" interpolation="lin,lin">

| <axes>

| <axis index="2" label="energy_in" unit="eV"/>

| <axis index="1" label="mu"/>

| <axis index="0" label="pdf(mu|energy_in)"/></axes>

| <XYs value="1e-05" index="0" interpolation="lin,lin">

| <values> ... </values></XYs>

| <XYs value="1e-01" index="1" interpolation="lin,lin">

| <values> ... </values></XYs>

| <XYs value="2e7" index="2" interpolation="lin,lin">

| <values> ... </values></XYs></multiD_XYs>

Example 2: An example for the XML representation of a x0(x3, x2, x1) function for P (µ,E′|E) would
look like:

| <multiD_XYs dimension="3" interpolation="lin,lin">

| <axes xlink:href="/templates/axes/angularEnergy"/>

| <multiD_XYs value="1e-5" index="0"

| dimension="2" interpolation="log,log">

| <XYs value="-1" index="0" function="Legendre">

| <values> ... </values></XYs>

| <XYs value="-0.5" index="1" function="Legendre">

| <values> ... </values></XYs>

| ...
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| <XYs value="1" index="4" function="Legendre">

| <values> ... </values></XYs></multiD_XYs>

| ...

| <multiD_XYs value="2e7" index="20" dimension="2">

| <XYs value="-1" index="0">

| <values> ... </values></XYs>

| <XYs value="-0.5" index="1" interpolation="log,log">

| <values> ... </values></XYs>

| ...

| <XYs value="1" index="4">

| <values> ... </values></XYs></multiD_XYs></multiD_XYs>

17 regions container

This container stores an n-dimensional function as a list of adjoining n-dimensional functions where
each function represents a di�erent region of the highest dimensional axis. The dependent values for
the adjoining functions can be discontinuous and their interpolation rules can be di�erent. Here, the
word adjoining means that for the highest dimensional axis, the upper domain boundary for region i
must be the same as the lower domain boundary for region i + 1. That is, there can be neither gaps
nor overlaps in the domain.

17.1 Speci�cations

Tag: regions

Attributes: The list of allowed attributes are:

index: [Integer32, contingent] De�ned by the parent. Contingency: required when container is
embedded in a higher dimensional container.

label: [UTF8Text, optional] De�ned by the parent.

style: [UTF8Text, optional] De�ned by the parent.

value: [determined by valueType attribute, contingent] Represents the xn+1 value for the con-
tainer. Contingency: required when embedded in an (n+1)-dimensional function.

valueType: [UTF8Text, default="Float64"] Speci�es the data type of value.

dimension: [Integer32, required] The dimension n of the function, equal to the number of inde-
pendent axes.

boundary: [optional] Speci�es how to evaluate the function at the intersection between two
regions. Allowed value is one of `lower', `average', and `upper'. If l and u are the values at
the boundary for the lower and upper regions, respectively, then the value at the boundary
is l, (l + u)/2 and u for `lower', `average' and `upper', respectively. Caleb, do we really
want this?

Body: The list of allowed containers are:
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axes: [optional] The axes information for the data. For an embedded container, the axes container
is inherited from its parent container if not present.

list of 1 or more [required] x0(xn, ..., x1) functional containers.

uncertainties: [optional] Contains a list of uncertainty containers.

17.2 Examples

Example 1: The following is an example for the use of the regions container representing a function
x0(x2, x1).

| <regions dimension="2">

| <axes xlink:href="/templates/axes/energy">

| <multiD_XYs index="0" dimension="2" interpolation="lin,lin">

| <XYs value="1e-05" index="0">

| <values> ... </values></XYs>

| ...

| <XYs value="2" index="11">

| <values> ... </values></XYs></multiD_XYs>

| <multiD_XYs index="1" dimension="2" interpolation="log,log">

| <regions value="2" index="0" dimension="1">

| <XYs index="0"> <values> ... </values></XYs>

| <XYs index="1" interpolation="log,log">

| <values> ... </values></XYs>

| <XYs index="2"><values> ... </values></XYs></regions>

| ...

| <XYs value="1e6" index="12">

| <values> ... </values></XYs></multiD_XYs>

| <multiD_XYs index="2" dimension="2">

| <XYs value="1e6" index="0"><values> ... </values></XYs>

| ...

| <XYs value="2e7" index="9">

| <values> ... </values></XYs></multiD_XYs></regions>

In this example, 'lin,lin' is used for the incident energy axis (i.e., x2) for 10−5 ≤ x2 ≤ 2 and
106 ≤ x2 ≤ 2× 107 (i.e., within the �rst and last multiD_XYs containers) and 'log,log' interpolation
is used for 2 ≤ x2 ≤ 106 (i.e., within the middle multiD_XYs). The middle multiD_XYs container
possesses a regions container. Furthermore, 'log,log' interpolation is used for the outgoing energy axis
(i.e., x1) inside the '/regions/multiD_XYs[@index=1]/regions[@index=0]/XYs[@index=1] section.

18 gridded container

An n-dimensional gridded container stores tabulated data representing a function of n independent
variables (i.e., x0(xn, ..., x1)) where the data are given on a grid for each independent axis. This container
is composed of an n-dimensional array container and an axes element composed of n+1 axis elements.
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The style attribute for independent axis i (0 < i ≤ n) shall be either points, boundaries or parameters
and the axis shall contain a values element whose data have the following interpretation:

points: a list of ascending xi values where the function is evaluated. Behavior of the dependent value
(i.e., x0) between consecutive xi values is determined by the interpolation for that axis.

boundaries: a list of ascending xi values where the function is constant between two consecutive
values. No interpolation shall be supplied for this style as it is always '�at'.

parameters: each value corresponds to a coordinate for a polynomial sequence. For example, the
parameters may be Legendre orders (possibly starting with the l > 0). No interpolation shall be
supplied for this style.

discussion point Currently we are restricting parameters-style grids to only hold
polynomial sequences. This makes it easier to associate the grid index with the
correct parameter: index 0 = c0, index 1 = c1 and so on. However, do we need to be
more general?

No style shall be supplied for the dependent grid.
For an axis whose values element represents N values, the length Ni of dimension i in the array

depends on the style attribute for that axis (i.e., dimension). For points and parameters styles, Ni = N .
For the boundaries style, Ni = N − 1.

An example of a use for a gridded container in nuclear data is the covariance matrix, where each
matrix element stores, for example, the covariance between a cross section at two di�erent ranges of
incident particle energies. The array of covariances by itself is insu�cient to fully describe the data;
the list of incident energy ranges is also needed.

discussion point For parameters style axis, are the values to be integers?

18.1 Speci�cations

Tag: gridded

Attributes: The list of allowed attributes are:

index: [Integer32, contingent] De�ned by the parent element. Contingency: required when con-
tainer is embedded in a higher dimensional container]

label: [UTF8Text, optional] De�ned by the parent element.

style: [UTF8Text, optional] De�ned by the parent element.

value: [determined by valueType attribute, contingent] Represents the xn+1 value for the con-
tainer. Contingency: required when embedded in an (n+1)-dimensional function.

valueType: [UTF8Text, default="Float64"] Speci�es the data type of value.

Body: The list of allowed elements are:

axes: [required] The axes information for the data.

array: [required] An array container representing the x0 values.

uncertainties: [optional] Contains a list of uncertainty containers.
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18.2 Examples

Example 1: In nuclear data a common use for gridded data is for storing covariance matrix data. If
the rows and columns of the matrix correspond to the same ranges of incident energy, the second axis
can link to the �rst (i.e., it can use the same boundaries de�ned in the �rst):

| <gridded>

| <axes>

| <axis index="2" label="rows" unit="eV" length="3"> 1e-5 1e5 2e+7</axis>

| <axis index="1" label="columns" xlink:href="../axis[@index='2']"/>

| <axis index="0" label="covariances" unit=""/></axes>

| <array shape="2,2" triangular="lower">

| <values length="3">

| 0.23

| 0.09 0.18</values></array></gridded>

Example 2: Another example is the transfer matrix used in deterministic transport codes. In this
example, the transfer matrix is stored as a 3-d array where the array dimensions correspond to (in
order): incident energy group `energy_in', outgoing energy group `energy_out', and Legendre order l.
The �rst two axis (corresponding to incident and outgoing energies) are boundaries-style axis, while
the third independent axis (corresponding to l) is parameters-style. No interpolation is allowed along
any of the independent axes in this example since 1) boundaries-style axis do not require interpolation
(they implicitly use �at interpolation), and 2) there is no interpolation between Legendre orders.

| <gridded>

| <axes>

| <axis index="3" label="energy_in" unit="MeV" length=88>

| 1.3068e-9 2.0908e-8 ... 20.0</axis>

| <axis index="2" label="energy_out" xlink:href="../axis[@index='0']"/>

| <axis index="1" label="Legendre order" unit="" style="parameters"

| length="9">0 1 2 3 4 5 6 7 8</axis>

| <axis index="0" label="matrix elements" unit="b"/></axes>

| <array shape="87,87,9" compression="flattened">

| <values label="flatIndices" length="...">0 87 ... 67338</values>

| <values label="numberOfValues" length="...">6 5 ... 3</values>

| <values length="...">

| 3.145 1.23e-4 -7.4e-6 8.9e-7 6.8e-9 9.2e-11

| 2.843 2.46e-4 -6.4e-6 3.2e-8 -7.8e-11

| ...

| 1.2e-4 0.23 0.784</values></array></gridded>

18.3 Discussion

• We could eliminate the style attribute and instead require that boundaries- and parameters-
style grids be given with �at interpolation. This solution has a downside if we want to explicitly
list the very top boundary.
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Instead of the following:

| <gridded>

| <axes>

| <axis index="2" label="foo" unit="" style="boundaries">

| <values>1 20</values></axis>

| <axis index="1" label="bar" unit="" style="boundaries">

| <values>0.5 8.5 15.8</values></axis>

| <axis index="0" label="vals" unit=""/></axes>

| <array shape="1,2"><values length="2">

| 7.6 8.4</values></array></gridded>

We would need the following:

| <gridded>

| <axes>

| <axis index="0" label="foo" interpolation="flat"

| style="points"><values>1 20</values></axis>

| <axis index="1" label="bar" interpolation="flat"

| style="points"><values>0.5 8.5 15.8</values></axis>

| <axis index="2" label="vals"/></axes>

| <array shape="2,3"><values length="6">

| 7.6 8.4 8.4

| 7.6 8.4 8.4</values></array></gridded>

The array shape grows by one in each dimension (from a 1 × 2 array to a 2 × 3 array) in order to
explicitly give the value at each point. This adds redundancy and a possibility for discrepancies.

• According to the current speci�cations, interpolation is required when the style is points, and
not allowed otherwise. Should we be more explicit and always require interpolation?

• Is boundaries the correct default axis style? It is a useful default since covariances and transfer
matrices are given on boundaries rather than at individual points.

• The length of each axis can be calculated from the array shape + the axis style. Should we
reduce redundancy by not storing the length explicitly?

• If the axis style is parameters, do we still need to supply a unit? We can do `unit=""', but
should we omit it altogether?

19 uncertainty container

A quantity (e.g., a length) has a mean value and an uncertainty (and a unit). Typically, the uncertainty
is given as a single value representing a 1-σ uncertainty for a normal distribution (e.g., 12.3± 1.2 cm).
At times, two uncertainty values are given, one representing the uncertainty below the mean value
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and another the uncertainty above the mean value (e.g., 12.3+1.4
−0.8 cm). Each uncertainty value may

be associated with a di�erent distribution. For example, the -0.8 distribution may be for a log-normal
distribution while the 1.4 is for a normal distribution. Furthermore, an uncertainty value may be given
as a percent (e.g., 12.3± 12% cm). The General-Purpose Data Containers support a similar structure
for a function's uncertainty where the uncertainty is expressed as one or more functions. For example,

for f(x)±d(x) the function d(x) represents the uncertainty of f(x) and for g(x)+u(x)
−l(x) the functions l(x)

and u(x) represent the lower and upper uncertainties, respectively. Each uncertainty function is called
an uncertainty component for a function. That is, g(x) has the two uncertainty components l(x) and
u(x).

Each uncertainty component is stored in an uncertainty container. The uncertainty container
lists the properties type, pdf and relation of the uncertainty and holds a functional container. The
following are pre-de�ned property values. A project can de�ne addition property values as needed.

type: Pre-de�ned values are:

variance: The uncertainty component is a function representing the uncertainty d(x) in f(x)±
d(x).

variance−: The uncertainty component is a function representing the uncertainty l(x) in the

expression f(x)+u(x)
−l(x) .

variance+: The uncertainty component is a function representing the uncertainty u(x) in the

expression f(x)+u(x)
−l(x) .

covariance: The uncertainty component is the self-covariance function for f(x).

con�dence-interval: The uncertainty component is a function d(x) which represents the con�-
dence interval for the numerical value given by the pdf property.

pdf: Pre-de�ned values are:

normal: The uncertainty is normally distributed about the mean with standard deviation given
by the component's function. For example, for y(x)±d(x) the distribution for y at x is given
as

pdf(y) =
exp

(
−(y−y(x))2

2d(x)2

)
√

2π d(x)
.

log-normal: Like normal but with pdf(y) given as

pdf(y) =
exp

(
−(log(y)−y(x))2

2d(x))2

)
y
√

2π d(x)
.

A number in the range [0,1]: For pre-de�ned types, this is only valid for con�dence-interval.

relation: The following will use the mean and its uncertainty f(x) ± d(x) to de�ne the meanings of
the various relation values. Pre-de�ned values are:

o�set: The uncertainty u(x) is given as an o�set from the mean (e.g., unc(x) = d(x)). This is
the typical de�nition for an uncertainty.
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absolute: The uncertainty is given as the o�set plus the mean value (e.g., unc(x) = f(x)+d(x)).
As example, if l(x) and u(x) are the lower and upper o�set uncertainties for f(x) (e.g.,

f(x)+u(x)
−l(x) ), the absolute representation for l(x) and u(x) are labs(x) = f(x) − l(x) and

uabs(x) = f(x) + u(x) respectively. This is most useful for type="con�dence-interval".

relative: The uncertainty is given as a ratio of the mean (e.g., unc(x) = d(x)/f(x)).

percent: Like relative except uncertainty is given as 100 times the relative uncertainty (e.g.,
unc(x) = 100× d(x)/f(x)).

The examples in the description of type, pdf and relation are for 1-dimensional functions. Multi-
dimensional functional uncertainties are support just like for 1-dimensional functions. For example, the
3-dimensional function may be given as x0(x3, x2, x1)±d(x3, x2, x1). For a collated function, uncertainty
data can be given in any of its sub-functions. For example, a collated x0(x2, x1) contains a list of x0(x1)
sub-functions and each of them can contain uncertainty data (See Example 4 in Section 20.2).

19.1 Speci�cations

Tag: uncertainty

Attributes: The list of allowed attributes are:

index: [Integer32, optional] De�ned by the parent element.

label: [UTF8Text, optional] De�ned by the parent element.

style: [UTF8Text, optional] De�ned by the parent element.

type: [UTF8Text, default="variance"] De�ned types are 'variance', 'variance+', 'variance−',
'covariance' and 'con�dence-interval'. Projects can de�ne additional types as needed.

pdf: [UTF8Text, default="normal"] De�ned values are 'normal', 'log-normal' and when the type
attribute is con�denceinterval, any number between 0 and 1. Projects can de�ne additional
pdfs as needed.

relation: [UTF8Text, default="o�set"] De�ned values are 'absolute', 'o�set', 'relative' and 'per-
cent'.

Body: A functional container with the proper dimension.

20 uncertainties container

Uncertainty data may be given for a functional container. All uncertainty data within a functional
container reside in the uncertainties element. An uncertainties container only possesses a list of
uncertainty containers, each representing a component of the total uncertainty.

20.1 Speci�cations

Tag: uncertainties

Attributes: The list of allowed attributes are:
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index: [Integer32, optional] De�ned by the parent element.

label: [UTF8Text, optional] De�ned by the parent element.

style: [UTF8Text, optional] De�ned by the parent element.

Body: The list of allowed elements are:

list of uncertainty containers.

20.2 Examples

Example 1: A tabulated x0(x1) with uncertainty. The uncertainty is 10% of f(x) at x = 0 and goes
to 15% at x = 3. The function with its uncertainty band is shown in Figure 1.

| <XYs>

| <axes>

| <axis index="1" label="energy" unit="eV"/>

| <axis index="0" label="cross section" unit="b"/></axes>

| <values> 0.0 1.000 0.1 1.316 0.2 1.447 0.3 1.547 0.4 1.632

| 0.5 1.707 0.6 1.774 0.7 1.836 0.8 1.894 0.9 1.948

| 1.0 2.000 1.1 2.048 1.2 2.095 1.3 2.140 1.4 2.183

| 1.5 2.224 1.6 2.264 1.7 2.303 1.8 2.341 1.9 2.378

| 2.0 2.414 2.1 2.449 2.2 2.483 2.3 2.516 2.4 2.549

| 2.5 2.581 2.6 2.612 2.7 2.643 2.8 2.673 2.9 2.702

| 3.0 2.732</values>

| <uncertainties>

| <uncertainty relation="relative">

| <XYs>

| <values> 0.0 0.1 3.0 0.15</values></XYs></uncertainty>

| </uncertainties></XYs>

Example 2: A tabulated x0(x1) with a lower and upper uncertainty component (i.e., f(x)+u(x)
−l(x) . Note,

the tabulated function and its uncertainties have di�erent x values. The function with its lower and
upper uncertainty lines is shown in Figure 2.

| <XYs>

| <axes>

| <axis index="1" label="energy" unit="eV"/>

| <axis index="0" label="cross section" unit="b"/></axes>

| <values> 0.1 2.9 0.2 2.2 0.4 1 0.6 1.6 1.2 3.8 2.1 6.2</values>

| <uncertainties>

| <uncertainty type="variance+" pdf="log-normal">

| <XYs>

| <values> 0.1 0.1 0.4 0.2 1 0.25 1.5 0.25 2.1 0.1</values>

| </XYs></uncertainty>

| <uncertainty type="variance-" pdf="normal">
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Figure 1: Plot of the function given in Example 1 of Section 20.2 and its uncertainty band.

| <XYs>

| <values> 0.1 0.6 0.4 0.4 2.1 0.1</values></XYs></uncertainty>

| </uncertainties></XYs>

Example 3: A tabulated x0(x1) with a covariance. The covariance is given as a 2-dimensional gridded
container.

| <XYs>

| <axes>

| <axis index="1" label="energy" unit="eV"/>

| <axis index="0" label="cross section" unit="b"/></axes>

| <values> 0.1 2.9 0.2 2.2 0.4 1 0.6 1.6 1.2 3.8 2.1 6.2</values>

| <uncertainties>

| <uncertainty type="covariance">

| <gridded>

| <axes> ... </axes>

| <array shape="6,6" triangular="lower">

| ...

| </array></gridded></uncertainty></uncertainties></XYs>

Example 4: A tabulated x0(x2, x1) with with two x0(x1) sub-functions, each with uncertainty data.

| <multiD_XYs>

| <axes>

| <axis index="2" label="energy" unit="eV"/>
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Figure 2: Plot of the function given in Example 2 of Section 20.2 and its lower and upper uncertainty
lines.

| <axis index="1" label="mu"/>

| <axis index="0" label="P(mu|energy)"/></axes>

| <XYs index="0" value="1e-5">

| <values> ... </values>

| <uncertainties> ... </uncertainties></XYs>

| <XYs index="1" value="2e7">

| <values> ... </values>

| <uncertainties> ... </uncertainties></XYs></multiD_XYs>

Example 5: A tabulated x0(x2, x1) with an uncertainties element. Its sub-functions do not have
uncertainties elements.

| <multiD_XYs>

| <axes>

| <axis index="2" label="energy" unit="eV"/>

| <axis index="1" label="mu"/>

| <axis index="0" label="P(mu|energy)"/></axes>

| <XYs index="0" value="1e-5">

| <values> ... </values></XYs>

| <XYs index="1" value="2e7">

| <values> ... </values></XYs>

| <uncertainties> ... </uncertainties>></multiD_XYs>

Example 1: An example for Legendre series with an equivalent of Cl
+b
−a for each coe�cient is
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| <series function="Legendre">

| <values length="4">1 0.1 -0.02 1.3e-5</values></series>

| <uncertainties>

| <uncertainty type="variance+">

| <series function="Legendre">

| <values length="4">0.1 0.05 -0.002 3.3e-5</values>

| </series><uncertainty>

| <uncertainty type="variance+">

| <series function="Legendre">

| <values length="4">0.1 0.03 -0.001 2.3e-5</values>

| </series><uncertainty></uncertainties>></series>

21 table container

The table container stores spreadsheet-style data as a list of M rows by N columns. The table container
is like a 2-dimensional array of shape "M,N". However, there are several di�erences between a 2-
dimensional array and a table:

• a table allows more data types; in particular, it allows for non-numeric data types

• a table allows for an empty cell

• a table allows for mixed data types

• sparse representations for tabular data are not supported.

For a table, the intersection of a row and a column is called a cell and stores a single datum. A
datum can be a Integer32, Float64, string, empty (indicated by `<td/>'), valid XML text or any other
type de�ned by a project. Each column has a header that consists of a label and meta-data. The label
names the column while the meta-data qualify the data in the column. The meta-data are stored as
key/value pairs, such as `unit="eV"'.

Each cell can contain one of the following �ve data types (or other types de�ned by a project):

Integer32: Any valid Integer32 value. For ASCII, the data are stored without quotes (e.g., 3245 and
not "3245").

Float64: Any valid Float64 values. For ASCII, the data are stored without quotes (e.g., 3.245e-4 and
not "3.245e-4").

string: Any string enclosed by the xml start element `<td>' and its end element `</td>'. For example,
<td>abcd</td>
or
<td>Even spaces and quotes (i.e., " and ') are allowed.</td>.

discussion point According to this de�nition, strings must always be enclosed by
<td> and </td>. Should we allow an exception if data are stored in column-major
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order, and one column consists entirely of strings (as in the �ssion product yields
example below)? Should we allow comma or space delimiters in that case?

empty: The string <td/> is used to denote a cell that is empty (i.e., has no value). Note that while
<td/> is valid XML text, it is treated here as an independent type.

Boolean values: The Boolean values for true and false are `<true/>' and `<false/>' respectively.
While these are XML text, they are treated as an independent type.

XML text: This is any valid XML text that starts with the <td> element and ends with the </td>
element. Valid XML text must have matching start/end tags. An example of valid XML text is:

discussion point Below we show examples of valid xml text. Should they come up earlier in
this document, perhaps in the `Basic data types' section?

<td><area><width value="12.3" unit="cm"/>

<height value="1.3"><unit>mm</unit></height></area></td>

An example of invalid XML text is:

<td><area><width value="12.3" unit="cm"/>

<height value="1.3"><unit>mm</unit></area></td>

The latter example is missing the matching end tag for the "<height>" start tag. Another
example of invalid XML text is:

<area><width value="12.3" unit="cm"/>

<height value="1.3"><unit>mm</unit></height></area>

This example is the same as �rst example, but is missing the <td> start and </td> end tags.

Speci�cations

Tag: table

Attributes: The list of allowed attributes are:

columns: [Integer32, required] The number of columns of the table.

rows: [Integer32, required] The number of rows of the table.

storageOrder: [optional: default is `row-major'] Allowed value is one of `row-major' and `column-
major'.

Elements: The list of allowed elements are:

columnHeaders: Contains a list of N `header' elements where N is the number of columns. Each
header shall obey the following speci�cations:
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header: One element for each column describing the data in each column.

Tag: `header'

Attributes: The list of allowed attributes are:

label: [UTF8Text, required] A string representing the name of the column.

index: [Integer32, required] An integer value in the range 0 to (N-1) that represents
the order of the column.

unit: [UTF8Text, optional: default is ""] The unit of the data in the column.

types: [UTF8Text, optional: default is "Float64"] A comma separated list of al-
lowed data types for the column. The allowed values are "Integer32", "Float64",
"string", "empty", "boolean", "XML" or project speci�c type. Note that in
the types value, the "<td/>" type is given as "empty". Examples for type are
`types="XML"' or `types="Float64,empty,string"'. If all types for a project are
allowed, the string `all' can be used instead of listing every type.

Elements: The list of allowed elements are:

extras: [optional] Allows for the storage of user speci�c attributes (i.e., meta-data).
discussion point Do these extra attributes (like the `L' and `channelSpin'
attributes in the example above) need to be stored in a separate element, or can
they be stored directly in the `header' element?

table: The data for the table, consisting of M × N cells.

Attributes: The list of allowed attributes are:

sep: [UTF8Text, optional: default is "whiteSpace"] Valid options are "whiteSpace", ",",
"td", "tr" or "tc". The standard rules for "whiteSpace" and "comma" separators
apply. The other separator options are described below.

Elements and/or Body: The layout of the table data depends on the values of the stor-
ageOrder and sep attributes.

sep=`whiteSpace' or `,' In this case the table has no sub-elements, and the body of
the table consists of a sep-separated list containing M × N values. The order of
data depends on the storageOrder. This option can only be used if all data in the
table are numeric types.

sep=`td' In this case every cell in the table is explicitly contained inside `<td>' and
`</td>' (or `<td/>' to indicate an empty cell). The order of data depends on the
storageOrder. This option can handle multiple data types, but if only a few cells
contain non-numeric data the following two options may be more concise.

storageOrder=`row-major', sep=`tr' In this case each row of the table is stored
inside `<tr sep="...">' and `</tr>'. Each row can de�ne its own separator, which
may be `whiteSpace' (the default), `td' or `,'. Any row containing non-numeric data
must have `sep="td"'.

storageOrder=`column-major', sep=`tc' In this case each column of the table is
stored inside `<tc sep="...">' and `</tc>'. Each column can de�ne its own sepa-
rator, which may be `whiteSpace' (the default), `td' or `,'. Any column containing
non-numeric data must have `sep="td"'. This storage is recommended whenever
some columns contain only numeric data while others contain mixed data types,
since it helps reduce the size of the numeric columns.
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Examples

• In GND, resonance parameters are stored in a table. In the resolved region, each row is one
resonance, and the columns store the energy and partial widths of the resonance.

A sample table storing nuclear resonance parameters might look like the following. Note that the
order attribute is equal to the default and could be omitted:

<table columns="4" rows="4" storageOrder="row-major">

<columnHeaders>

<header index="0" label="energy" types="Float64" units="eV"/>

<header index="1" label="gamma + Cl36 width" types="Float64" units="eV">

<extras L="0" channelSpin="0.0"/></header>

<header index="2" label="n+Cl35 width", types="Float64" units="eV">

<extras L="0" channelSpin="1.0"/></header>

<header index="3" label="H1+S35 width" types="Float64" units="eV">

<extras L="0" channelSpin="1.0"/></header></columnHeaders>

<table>

54932.0 0.36726 46.4424 0.0

68236.16 0.39336 217.904 1e-05

115098.0 0.739 4.30778 0.0

182523.0 0.74515 1759.74 0.4

</table></tag>

In this example, each row corresponds to a single resonance, and each column corresponds to one
parameter (such as the central energy, width, spin, etc.) of that resonance.

• Fission product yields can be stored in tables, with one column storing �ssion product names and
other columns storing the yields (and possibly uncertainties) for various incident energies:

<table columns="3" rows="1262" storageOrder="column-major">

<columnHeaders>

<header index="0" label="product" types="string"/>

<header index="1" label="yield_1" types="Float64">

<extras energy_in="0.0253 eV"/></header>

<header index="2" label="d(yield_1)" types="Float64">

<extras energy_in="0.0253 eV"/></header>

<header index="3" label="yield_2" types="Float64">

<extras energy_in="5e5 eV"/></header>

<header index="4" label="d(yield_2)" types="Float64">

<extras energy_in="5e5 eV"/></header></columnHeaders>

<table>

<column><td>V66</td><td>V67</td><td>V68</td> ...

<td>Hf171</td><td>Hf172</td></column>

<column>2.05e-19 0 0 ... 0 0</column>
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<column>1.312e-19 0 0 ... 0 0</column>

<column>4.485e-18 7.338e-19 9 ... 0 0</column>

<column>2.87e-18 4.696e-19 0 ... 0 0</column></table></tag>

• In EXFOR, experimental data and uncertainties are stored in tables. Each row typically corre-
sponds to an incident energy, and columns contain information like cross section, ratio to standard,
uncertainty, etc.

Discussion

• Do tables need a way to specify interpolation rules between either rows or between columns (or
both)?

22 Additional discussion points

discussion point

• Should data containers allow additional attributes (beyond those listed in these speci�cations)
de�ned by a project?

• De�ne a physical quantity
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A Other meta-languages

The discussion and speci�cations have so far have used the XML meta-language and examples in it. This
section illustrates how other meta-languages can be used to express general-purpose data containers.

The XML meta-language has the following high level concepts:

1. three fundamental components - element, attribute and body. Recall, an attribute is a key with
a value.

2. an element's body can contain text and other elements interspersed.

3. multiple elements with the same tag can reside within the same parent element

If a meta-language contains these concepts, expressing general-purpose data containers in it should be
easy. However, many meta-languages lack either the attribute in concept 1, concept 3 or both. For
example, JSON does not support attributes, and JSON and HDF5 do not support concept 3. For these
meta-languages, the following two more speci�cation are added to the general-purpose data containers:

1. the element attributes is a reserved element for storing an element's attributes. This element
contains an element for each attribute. Each contained element shall use the key for its tag name
and the value for its body.

2. the name `tag' is reserved for attribute and element names that shall contain the actual tag name
if the meta-language does not support concept 3.

For example, the following XML:

<employees>

<employee>

<name first="Doc" last="Jones"/></employee>

<employee>

<name first="Grumpy" last="Smith"/></employee>

<employee>

<name first="Happy" last="Earp"/></employee></employees>

can be expressed in XML - although not recommend - as:

<employees>

<employee1 tag="employee">

<name>

<attributes>

<first>Doc</first>

<last>Jones</last></attributes></name></employee1>

<employee2 tag="employee">

<name>

<attributes>

<first>Grumpy</first>
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<last>Smith</last></attributes></name></employee2>

<employee3 tag="employee">

<name>

<attributes>

<first>Happy</first>

<last>Earp</last></attributes></name></employee3>

</employees>

Or, in JSON as:

{ "employees" : {

"employee1" : {

"tag" : "employee",

"name" : {

"attributes" : {

"first" : "Doc"

"last" : "Jones" } } },

"employee2" : {

"tag" : "employee",

"name" : {

"attributes" : {

"first" : "Grumpy"

"last" : "Smith" } } },

"employee3" : {

"tag" : "employee",

"name" : {

"attributes" : {

"first" : "Happy"

"last" : "Earp" } } } } }

B Python regular expression syntax

This section describes some of the Python regular expression syntax. A regular expression is a "sequence
of characters that forms a search pattern". For this article, a regular expression representing a form is
compared to a string and if they match, the string is properly formatted for that form. For the limited
use of regular expression syntax in this article, it is su�cient to consider a regular expression built using
4 elements: a repetition character, an expression, the or-ing operator and escape sequences. Here a
expression can be another regular expression.

An expression can be:

• a single character except a few special characters which need to be escaped. For this discussion,
the important special characters are `.', `[', `]', `(', `)', `|', `?', `*' and `+'.

• any character between the `[' and `]'. For example, the expression representing any of the �rst
6 lower case English alphabet characters (LCEA) can be the string `[abcdef]' or `[defbca]' (i.e.,
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order does not matter). This can be shortened using the `-' character to `[a-e]'. Independent of
the number of characters between the `[' and `]', only one character in the string is compared
to the list of characters between the `[' and `]'. For example, the regular expression `c[aeiou]t'
matches `cat' and `cot' but not `coat' as the sub-expression `[aeiou]' is only compare to the second
character.

• The period character `.' matches any character.

• The regular expression between the `(' and `)'. For example, the string `(ab?cd+)'.

For this article, we only need the following repetition characters and their expressions. If `C' is an
expression then the repetition expressions are:

`C?': 0 or 1 of the preceding `C' expression. For example, `a?' will match 0 or 1 `a' character.

`C+': 1 or more of the preceding `C' expressions. For example, `a+' will match 1 or more `a' characters.

`C*': 0 or more of the preceding `C' expressions. For example, `a*' will match 0 or more `a' characters.

`C{m}': m of the preceding `C' expressions. For example, `a{4}' will match 4 `a' characters.

`C{m,n}': m to n of the preceding `C' expressions. For example, `a{2,4}' will match 2, 3 or 4 `a'
characters.

The or-ing character is the `|' character. For example, the regular expression `a|b' will match either
the string `a' or `b'. The or-ing character has the lowest precedence so the expression `abc|def' will
match either `abc' or `def'.

An escape sequence starts with the backslash character (i.e., `\') followed by a character designating
a special mode. For this article, the only relevant escape sequence is `\.' which allows for the matching
of the period character (i.e., `.').

A simple regular expression example to match any number of the form `#', `#.', `#.#' or `.#'
where # is an integer number of arbitrary size (e.g., `324'). The �rst three are matched by the regular
expression `[0-9]+\.?[0-9]*'. The last representation is matched by the regular expression `\.[0-9]+'.
Combining these with the or-ing character yields the expression `[0-9]+\.?[0-9]*|\.[0-9]+' which matches
all four number representations.
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