
DRAFT

Requirements and specifications for a particle database

WPEC Subgroup 38

May 5, 2015

Contents

1 Introduction 3

2 Definitions 4

3 Requirements 5
3.1 Discussion . 6

4 Specifications overview 8

5 Particle naming schemes 9
5.1 Specifications . 9

6 Physical quantities and uncertainty 10
6.1 quantity . 10

6.1.1 Specifications . 10
6.2 uncertainty . 11

6.2.1 Specifications . 11
6.3 Particle property . 12

6.3.1 Specifications . 12
6.4 Examples . 12
6.5 Discussion . 14

7 particleDatabase 15
7.1 Specifications . 15
7.2 Example . 15

8 documentation 16
8.1 Specifications . 16
8.2 Discussion . 16

1

DRAFT

9 bibliography 16
9.1 Discussion . 17

10 alias 17
10.1 Specifications . 17

11 aliases 17
11.1 Specifications . 18
11.2 Example . 18
11.3 Discussion: . 18

12 particle 18
12.1 Specifications . 18
12.2 Example . 19

13 decay 20
13.1 Specifications . 20

14 product 20
14.1 Specifications . 20
14.2 Discussion . 21

15 decays 21
15.1 Specifications . 21
15.2 Examples . 21
15.3 Discussion . 22

16 Particle families 22

17 anti-particles 23
17.1 Specifications . 23
17.2 Example . 23
17.3 Discussion . 23

18 Particle groups 24
18.1 chemicalElement . 24

18.1.1 Specifications . 24
18.2 isotope . 24

18.2.1 Specifications . 24
18.3 nuclearLevel . 25

18.3.1 Specifications . 25
18.3.2 Discussion . 26

2

DRAFT

18.4 Examples . 26
18.5 qualifiers . 28

19 Final discussion 28

1 Introduction

One of the tasks of WPEC Subgroup 38 (SG38) is to design a database structure for storing
the particle information needed for nuclear reaction databases and transport codes. Since
the same particle may appear many times in a reaction database (produced by many differ-
ent reactions on different targets), one of the long-term goals for SG38 is to move towards
a central database of particle information to reduce redundancy and ensure consistency
among evaluations. The database structure must be general enough to describe all rele-
vant particles and their properties, including mass, charge, spin and parity, half-life, decay
properties, and so on. Furthermore, it must be broad enough to handle not only excited
nuclear states but also excited atomic states that can de-excite through atomic relaxation.
Databases built with this hierarchy will serve as central repositories for particle information
that can be linked to from codes and other databases. It is hoped that the final product is
general enough for use in other projects besides SG38.

While this is called a ‘particle database’, the definition of a particle (as described in
Section 2) is very broad. The database must describe nucleons, nuclei, excited nuclear states
(and possibly atomic states) in addition to fundamental particles like photons, electrons,
muons, etc. Under this definition the list of possible particles becomes quite large. To
help organize them the database will need a way of grouping related particles (e.g., all the
isotopes of an element, or all the excited levels of an isotope) together into particle ‘groups’.
The database will also need a way to classify particles that belong to the same ‘family’ (such
as ‘leptons’, ‘baryons’, etc.). Each family of particles may have special requirements as to
what properties are required.

One important function of the particle database will be to provide an easy way for
codes and external databases to look up any particle stored inside. In order to make access
as simple as possible, the database will include unique names (or ‘id’s) for every particle
that it stores. Reaction databases can then refer to a specific particle either by id. Where
possible, particle ids should be made descriptive to assist human readers in understanding
the contents of reaction and particle databases.

The particle database is being primarily developed to store nuclei and nuclear states,
but it must also be capable of storing some atomic and molecular properties. In particular
the database must support atomic electron configurations since they can play an important
role in nuclear reactions and decays. Excited nuclear states sometimes decay via internal
conversion, ‘kicking out’ an electron from an inner shell and leaving the remaining electrons
to de-excite (emitting x-rays) to fill the new vacancy. Excited atomic states can also be
populated through photo-atomic reactions Adding electronic configurations to the database

3

DRAFT

has the potential to drastically increase its size: if unique ids must be given not only to each
nucleus and excited nuclear level but also to every possible electron configuration for each
nucleus and level, the database will quickly grow to an unmaintainable size. In order to
get around this problem and support atomic and molecular properties without drastically
increasing the number of particles, the database will allow the use of ‘qualifiers’ that can
be added to a particle to modify its properties. For example, the qualifier ‘electronVa-
cancy="1s1/2"’ could be added to an isotope or excited nuclear level to indicate a vacancy
in one of the electron shells. Qualifiers will be discussed in more detail in section 18.5.

This document describes the requirements and specifications for a particle data hi-
erarchy, including documentation, bibliography information, particle qualifiers as well as
particle families and particle groups. This document uses the XML meta-language to illus-
trate examples of how particle data will be stored. However, like other tasks under SG38,
it should be possible to store the particle database in other meta-languages (that is, lan-
guages that define a general syntax that can be used to define more specific languages) that
support nested hierarchies.

2 Definitions

The following terms will be used frequently throughout this document:

• matter: Any small, localized object such as an atom, isotope or elementary particle.
Every ‘matter’ instance in the particle database is assigned a unique id.

• Particle: A small, localized object that can be attributed properties such as mass,
charge, spin, parity, half-life and decay properties. This definition is deliberately
broad to include nuclei and excited nuclear states as well as fundamental particles
like the electron and photon.

• Particle Family: A set of particles that can be classified together (examples include
leptons, baryons, isotopes and excited nuclear levels). Particle families may add
additional properties that must be defined for all their particles (i.e. lepton number
for all leptons, and level energy for all excited nuclear levels).

• Particle Group: A particle group is a set containing related particles so that they
all appear together within a particle database hierarchy. This is useful when a set
of particles have properties in common: the common properties are defined in the
particle group, and inherited by all particles in that group. The excited levels of an
isotope are an example: they share properties like the proton count Z and the mass
number A.

• id: A string used to identify and refer to a particle. Each particle in the database
must have a unique id.

4

DRAFT

• qualifier: Extra key that may be appended to a particle id to give additional infor-
mation about a specific instance of that particle.

3 Requirements

In this section, the key words ‘shall’ and ‘should’ will be used to differentiate between
requirements and recommendations.

1. Each ‘particle’ and ‘particleGroup’ in the database shall have a unique id used to
identify and refer to it. Only these objects shall have ids (for example, no id is given
to a mass or spin).

2. A naming convention for ids shall be defined. Creating and adhering to a naming
convention makes comparing and merging different particle databases simpler. If a
user wishes to refer to a particle by a name that is not consistent with the naming
scheme, they can still do so by defining an ‘alias’ for that particle (see requirement 10).

3. Every particle shall contain at least the following properties: mass, charge, spin,
parity and half-life. However, some of these properties may be inherited from higher
in the hierarchy rather than being listed explicitly (see requirement 5).

4. The database shall support storing uncertainties with each particle property. Multiple
types of uncertainty should be supported, including central values with uncertainty
(for example, mass = 54.938 ± 0.729 amu), upper/lower uncertainty intervals (e.g.,
mass = 0.03 eV/c2 - 0.02 + 0.06), and lists of multiple possible assignments (e.g., spin
= 3/2, 5/2 or 7/2). If multiple assignments are listed, the database shall assign one
as the ‘recommended’ value.

5. The database shall use nesting and inheritance where possible to reduce redundancy
by grouping similar particles together. For example, the database should support
grouping isotopes with the same atomic number together inside an element, such
that all isotopes inherit the same atomic number Z from the element. It should also
support grouping excited nuclear states of the same isotope together, such that the
mass of each excited state can be computed from the ground-state mass and excitation
energy.

6. The database shall support defining ‘families’ to classify similar particles. Each par-
ticle family may have additional required data elements (beyond the list in require-
ment 3). For example, a ‘nuclearLevel’ family should be defined, where each nuclear
level requires a level energy and level index in addition to charge, spin, parity, etc.

7. The database shall support storing decay properties for unstable particles. Decays are
organized into decay channels, which consist of a probability and a list of products.

5

DRAFT

Each product may also have an associated uncertainty. For example, if an excited
nuclear level can γ-decay to two different levels, the decay can be stored either as two
different decay channels that each contain a probability and one gamma product, or
as a single decay channel with two gamma products and their probabilities.

8. The database shall support storing documentation sections at multiple levels, down
to the level of an individual particle property like mass or spin.

9. The database shall support a bibliography section. Each item in the bibliography shall
include a unique citation label that can be used to refer to it from any documentation
section.

10. The database shall support a mechanism for defining aliases for particles. For exam-
ple, the id "Am242_m1" could be an alias for "Am242_e2". Alias definitions shall
be permitted at various places within the particle database.

11. When linking to a particle database, user codes shall be permitted to add extra
information about a particle by using ‘qualifier’ keys. For example, a qualifier key
may be defined to describe the electron configuration of an atom following a photo-
atomic reaction.

3.1 Discussion

• Question: should there be a pre-defined list of the units that are allowed within the
particle database, or should choice of units be up to the user? If we decide on the
first, that should be added as another requirement.

• Should the database support flags like ‘firm’, ‘tentative’, etc. to indicate confidence
in an assignment? Those could be stored in documentation sections, but if user
codes need to know which assignments are tentative they shouldn’t need to parse
documentation to find out.

• Regarding requirement number 7: There are several ways of handling decay radiation,
so this requirement needs a bit more discussion.

In GND, both reaction data and decay data are sorted into channels, where every
channel has a different list of outgoing products. If that example is followed in the
particle database, then decays to different excited states in the daughter nucleus
would each have their own decay channel. Decay spectra are then reconstructed by
looking up each daughter product, checking their decay properties, and summing over
all products. For example, a nuclear excited state that can decay via two different
gammas would be stored as:

<nuclearLevel id="C12_e8" levelIndex="8">

6

DRAFT

...
<decays>

<decay mode="gamma" probability="0.87">
<product pid="gamma"/>
<product pid="C12_e0"/></decay>

<decay mode="gamma" probability="0.13">
<product pid="gamma"/>
<product pid="C12_e1"/></decay>

</decays></nuclearLevel>

The second decay mode leaves C12 in an excited state. Decay properties of that state
(C12_e1) can be found by looking it up in the database. That particle would contain
information about another gamma decay that leads to the ground state and emits a
4.4389 MeV gamma. Gamma energies do not need to be explicitly stored, since they
can be calculated from the initial and final level energies. This organization is useful
for presenting detailed decay spectra that may proceed through multiple paths. It
is less useful when the details are uncertain, such as when a decay passes through
unknown short-lived intermediate states on its way to a longer-lived product.

Other databases follow a different organization. For example, the ENDF decay sub-
library starts by listing the possible decay modes (as in ‘β+’, ‘electron capture’, etc.),
and then lists the decay radiation (including both discrete and continuous spectra)
emitted via all decay modes, potentially including radiation emitted not by the parent
but by a short-lived intermediate state. In this case, the C12_e8 decay scheme would
become:

<nuclearLevel id="C12_e8" levelIndex="8">
...
<decays>

<decay mode="gamma" probability="1">
<product pid="gamma" probability="0.87">

<energy value="12.71" unit="MeV"/></product>
<product pid="gamma" probability="0.13">

<energy value="8.271" unit="MeV"/></product>
<product pid="gamma" probability="0.13">

<energy value="4.4389" unit="MeV"/></product>
<product pid="C12_e0" probability="1.0"/>

</decay></decays></nuclearLevel>

This is a suitable way of storing experimental decay spectra, since experiments are

7

DRAFT

actually measuring the transitions rather than the particles that emitted those tran-
sitions. It is also useful when searching through measured decay radiation to find
what parent likely emitted the radiation. On the other hand, it obscures the fact that
the 8.271 MeV and 4.4389 MeV gammas occur in coincidence. This style also leads
to possible redundancy and discrepancies if more than one parent particle can decay
through the same intermediate states, since the same gamma products may also be
emitted as part of the decay cascade from a higher level.

• There are some special cases that also need to be considered. For example, how should
correlated decays be handled? Example: angular correlations between Ni60 gammas
following Co60 beta decay. These angular correlations show up because the two M2
gamma transitions happen back-to-back, meaning that the second decay is not truly
independent of the first. Is it sufficient to store the fact that each transition is M2,
and require user codes to calculate the angular correlations if needed? Or, do we need
some explicit markup indicating that these decays are correlated?

• Another question: current decay databases use the internal conversion coefficient
(ICC) when a decay can proceed either through gamma emission or through internal
conversion. Should we continue to support that convention (grouping all ‘electro-
magnetic’ decays together and then using a coefficient to denote relative weights), or
should we break them out into separate decay channels?

Another potentially useful convention is to store branching ratios instead of proba-
bilities: each decay mode has a branching ratio BR = (probability of this decay) /
(probability of most likely decay). Should we continue to support that convention, or
always just store the decay probabilities?

• Should the requirements include a way to describe how ‘complete’ a level scheme is
(i.e., how many levels starting from the ground state have firm spin/parity and energy
assignments)? Also, should there be a way of specifying rotational bands for excited
nuclear levels?

4 Specifications overview

The rest of this paper describes the structure of the particle database hierarchy, along
with XML examples to clarify the specifications. The paper is broken up into sections
corresponding to the components of the particle database. Each section starts with a brief
discussion, followed by a list of proposed specifications for storing and using that type of
data.

The following sections present proposed particle naming conventions, followed by a
proposal for a common container for storing physical quantities (including uncertainties).

8

DRAFT

Specifications are then given for the full particle hierarchy, starting with the top-level el-
ement (the ‘particleDatabase’), and descending down. For each element in the hierarchy,
the required and optional attributes and sub-elements are listed along with a general de-
scription of the type of data stored at that level. Where applicable, design choices in the
hierarchy will be tied to specific requirements from section 3.

5 Particle naming schemes

Since particle ids are used to access particles from codes or from other databases, they shall
follow a naming convention in order to be easy to recognize and identify across multiple
particle databases. The naming scheme should be consistent, applying the same rules to
each particle family where possible. It should be designed to give short, easily-recognized
names to the most commonly used particles.

While the naming scheme is meant to be strictly adhered to, users will also be able to
define aliases in case they prefer a different naming scheme. The meanings of some common
aliases are also specified, to ensure that they point to the expected particle.

5.1 Specifications

• Ids for common particles include ‘e-’ for the electron, ‘n’ and ‘p’ for the neutron and
proton, ‘photon’ for the photon and ‘nu_e-’ for the electron neutrino.

• Ids for anti-particles follow the convention ‘particleName_anti’. For example, the
positron (anti-particle of the electron) is denoted ‘e-_anti’, although it may also be
aliased to ‘e+’.

• Nuclear states including the ground state and excited levels are identified by their
atomic symbol, the total number of nucleons ‘A’, and the energy level index stored
as ‘_e#’ (where ‘#’ is an integer string equal to the level index). For example, the
ground state of the isotope with 26 protons and 30 neutrons has the id ‘Fe56_e0’.
The third excited state of the same isotope has the id ‘Fe56_e3’.

• Some common aliases are defined, along with the particle they link to.

– An isotope name shall be an alias pointing to the ground state. For example,
the alias ‘Fe56’ points to the nuclear level ‘Fe56_e0’.

– Nuclear metastable states are aliases pointing to the appropriate nuclear level.
For example, the first metastable state of Am242 is stored with the alias ‘Am242_m1’,
which points to the particle with id ‘Am242_e2’. The suffix ‘_m#’ shall only
be used to denote metastable states.

– The alias ‘e+’ is reserved for the positron (anti-particle to the electron). It can
be used instead of the particle id ‘e-_anti’.

9

DRAFT

– Other common aliases?

These proposed naming conventions will be used through the rest of this document.

6 Physical quantities and uncertainty

Particle properties like mass, half-life and charge are all quantities with a value, unit and
possible uncertainty information. Simple quantities can be compactly expressed as a string
with units, as in ‘mass=“1.0089 amu +/- 1.1e-3” ’, where the uncertainty represents 1σ of a
normal distribution. Other quantities cannot be expressed so compactly: their uncertainty
distribution may not be Gaussian, may be asymmetric, or may be expressed as multiple
different confidence intervals. In order to handle all these possibilities, the particle database
uses a more flexible (although more verbose) representation for physical quantities and their
uncertainties, as described below.

6.1 quantity

The quantity is an element storing a single physical value along with a label, unit, and
optional documentation and uncertainty information.

6.1.1 Specifications

Tagname: ‘quantity’

Attributes:

label (required): string identifying this quantity.

value (required): value of the quantity. The value may be numeric (integer or
floating-point), or it may be a string.

unit (optional, default=‘’): string name of the unit for this quantity. The unit
can be omitted if the quantity is unit-less.

for (optional, default=‘’): link pointing to another quantity that should be asso-
ciated with this one. See example in section 6.5.

confidence (optional, default=‘’): Needs detail

Child elements:

documentation (optional): Contains documentation specific to this quantity (how
it was derived, etc.).

uncertainty (0 or more): See next section for a description of the ‘uncertainty’
element.

10

DRAFT

6.2 uncertainty

A quantity may contain more than one uncertainty element. Each one stores a description
of an uncertainty distribution or confidence interval. For a symmetric uncertainty distribu-
tion, only one ‘uncertainty’ element is needed. However, multiple uncertainty elements are
required for more complicated uncertainties such as asymmetric distributions or multiple
confidence intervals.

6.2.1 Specifications

Tagname: ‘uncertainty’

Attributes:

value (required) : numeric value of this uncertainty

unit (optional, default=‘sameAsParent’) : string containing the unit. Possible
values of the ‘unit’ are:

‘sameAsParent’: indicates an absolute uncertainty, given in the same units
as the parent quantity. Thus, if the unit for the parent quantity is ‘s’,
‘value="0.1"’ indicates an uncertainty of 0.1s.

‘relative’: indicates that the value is a relative uncertainty. Here, ‘value="0.1"’
indicates an uncertainty of 10%

‘%’: indicates a percent uncertainty. Here, ‘value="0.1"’ indicates an uncer-
tainty of 0.1%

any other unit: indicates an absolute uncertainty given in the specified unit.
The specified unit must be compatible with the unit of the parent quantity.

type (optional, default=‘variance’) : indicates how this uncertainty is to be
used. Possible values of ‘type’ are:

variance: the value represents 1σ, symmetric around the central value,
variance-: the value represents 1σ below the central value,
variance+: the value represents 1σ above the central value, or
confidence-interval-: the value corresponds to a confidence interval below the

central value. This option must be used along with a number in the pdf
attribute.

confidence-interval+: the value corresponds to a confidence interval above the
central value. This option must be used along with a number in the pdf
attribute.

pdf (optional, default=‘normal’) : describes the shape of the probability distri-
bution. Possible values of ‘pdf’ are:

normal: standard Gaussian distribution,

11

DRAFT

log-normal: log-normal distribution, or
any number in the range [0,1]: indicates a given confidence interval (only for

use when ‘type’ is equal to ‘confidence-interval-’ or ‘confidence-interval+’).

Child elements: None

6.3 Particle property

According to requirement 4, the particle database must support storing multiple possible
assignments for a quantity. For example, an evaluator may not be able to firmly establish the
spin and parity of a particle, but may be able to narrow the list down to a few possibilities.
Each of these possibilities is stored in a quantity element, and they are grouped together
inside a particle property.

6.3.1 Specifications

Tagname: determined by the property type: ‘mass’, ‘charge’, ‘spin’, ‘parity’, ‘halflife’, etc.

Attributes:

recommended (required if the set contains more than 1 quantity): xPath link
indicating which quantity is considered the best value. The link uses the label
attribute to uniquely specify one quantity.

Child elements:

quantity (1 or more): The list of possible quantities in this set. Each quantity in
the set shall have a unique label attribute.

6.4 Examples

If the recommended mass for a paquantityrticle is the atomic mass (“1.0089 amu” with
uncertainty “± 1.1e-3 amu”), it can be stored in XML as:

<mass recommended=‘quantity[@label="atomic"]’>
<quantity label="atomic" value="1.0089" unit="amu">

<documentation>Atomic mass from Audi&Wapstra ...</documentation>
<uncertainty pdf="normal" type="variance" "value="1.1e-3"/>

</quantity>
</mass>

In the mass element, xLink/xPath syntax [1] is used to indicate the recommended
value. In this case the recommended attribute could be omitted since mass contains only

12

DRAFT

one quantity. The pdf and type attributes on the uncertainty element could also be
omitted since they are equal to the defaults.

If the same mass value were given with asymmetric uncertainties, it could be stored as:

<mass recommended=‘quantity[@label="atomic"]’>
<quantity label="atomic" value="1.0089" unit="amu">

<documentation>Atomic mass from Audi&Wapstra ...</documentation>
<uncertainty pdf="normal" type="variance-" "value="9e-4"/>
<uncertainty pdf="normal" type="variance+" "value="1.2e-3"/>

</quantity>
</mass>

The particle structure supports listing multiple possible assignments for a particle’s
property. In this case the property contains multiple quantities, along with a ‘recommended’
flag indicating which to use by default. In the example below, the recommended spin is
‘1/2’, but other possible assignments include ‘3/2’ and ‘5/2’:

<spin recommended=‘quantity[@label="0"]’>
<quantity label="0" value="1/2" unit="hbar"/>
<quantity label="1" value="3/2" unit="hbar"/>
<quantity label="2" value="5/2" unit="hbar"/>

</spin>

The database also supports listing multiple different representations of a quantity type.
For example, while the mass of an isotope is typically given in atomic mass units, it may also
be given as a mass excess or as binding energy per nucleon. In this case, each representation
may have its own associated uncertainty:

<mass recommended=‘quantity[@label="atomic"]’>
<quantity label="atomic" value="54.93804514" unit="amu">

<uncertainty value="7.3e-7"/></quantity>
<quantity label="massExcess" value="-57710.58" unit="keV">

<uncertainty value="0.68"/></quantity>
<quantity label="bindingEnergyPerNucleon" value="8764.988" unit="keV">

<uncertainty value="1.2e-2"/></quantity>
</mass>

In both examples, the recommended attribute is required to specify which child quantity
to use by default. The uncertainty elements do not need to specify their pdf and type
since they are both equal to the default values ("normal"‘ and "variance" respectively).

13

DRAFT

6.5 Discussion

• In the spin example above, the spin is given as a ratio ‘1/2’ rather than a floating-
point equivalent. Another possibility would be to use units of ~/2 and store all spins
as integers, but this may be less familiar and less intuitive to nuclear and particle
physicists.

• The examples above do not deal with the possibility (raised earlier in the discussion
of requirements) that we may need to support multiple correlated assignments, as in:
‘spin/parity = 1/2- or 3/2+’. This appears occasionally in RIPL and ENSDF, for
example the 3.13 MeV excited state in Mn51 which has spin/parity = either 3/2- or
5/2+.

One suggestion for handling this is to add a for attribute to a quantity element, that
links two correlated values. For example,

<particle id="...">
...
<spin recommended=‘quantity[@label="0"]’>

<quantity label="0" value="1/2" unit="hbar"
for=‘../../parity[@label="0"]’/>

<quantity label="1" value="3/2" unit="hbar"
for=‘../../parity[@label="1"]’/>

</spin>
<parity recommended=‘quantity[@label="0"]’>

<quantity label="0" value="-1" unit=""
for=‘../../spin/quantity[@label="0"]’/>

<quantity label="1" value="+1" unit=""
for=‘../../spin/quantity[@label="1"]’/>

</parity>
</particle>

This approach uses explicit links to indicate which spin and parity are meant to be
used together. It opens up a possibility for discrepancies, however, if the for attribute
for a spin points to a parity that does not point back to the same spin.

One option to resolve that problem would be to only use the for attribute to link
from the spin to the associated parity, and not vice-versa. In that case, there would
be at most two possible parity assignments, and multiple spins could point to the
same parity.

TBD: need an example showing the use of confidence attribute for quantities.

14

DRAFT

7 particleDatabase

The previous section described the quantity and uncertainty elements that are used to
store basic physical data. In the next section we turn to the overall organization of the
database, which contains all particles as well as documentation, a bibliography and a list
of aliases.

7.1 Specifications

Tag: ‘particleDatabase’

Attributes:

formatVersion (required): the format version for the particle hierarchy, required
since the format may evolve in the future.

library (required): name of the evaluated particle library.

libraryVersion (required): version of the library.

date (required): The compilation date for this particle library, stored in the format:
‘YYYY-MM-DD’.

Child elements:

documentation (required) : see section 8.

bibliography (optional) : see section 9.

aliases (optional) : see section 11.

particle (0 or more) : a list of particle elements. The particle is described in
section 12.

particleGroup (0 or more) : a list of particleGroup elements. The particle-
Group is described in section 18.

7.2 Example

<particleDatabase formatVersion="1.0" library="newParticleLibrary"
libraryVersion="0.1" date="2015_04_29">

<documentation> ... </documentation>
<bibliography> ... </bibliography>
<aliases> ... </aliases>
<!-- list of particles and particle groups: -->
<boson> ... </boson>
...
<lepton> ... </lepton>

15

DRAFT

...
<chemicalElement> ... </chemicalElement>
...

</particleDatabase>

8 documentation

The documentation element can appear at several different places in the hierarchy, in-
cluding inside the particleDatabase. The documentation section will follow the same
specifications as defined for ‘text’ containers in the general-purpose data containers re-
quirements document.

8.1 Specifications

Tag: ‘documentation’

Attributes:

markup: Markup language used to store this documentation. Possible values include
‘xhtml’, ‘xml’ or ‘latex’.

characterSet: Restricts the allowed characters for use in documentation. Default =
‘utf-8’, another possible value is ‘ascii’.

Contents: Documentation data stored in the indicated style. If the style is ‘xhtml’ or
‘xml’, the documentation shall be wrapped inside an XML CDATA section (when
stored in XML) to show that it is not meant to be handled by the XML parser.

8.2 Discussion

Even in an xml document, the CDATA may not be necessary so long as the contents are
well-formed xml or xhtml. There would be a problem if the section contained reserved xml
characters like ‘<’, ‘>’ or ‘&’.

9 bibliography

The bibliography element contains a list of references, each with a unique ‘refId’.
XML-based markup for bibliographies already exist. One option is BibTeXML (http://

bibtexml.sourceforge.net/), an XML representation of the BibTex bibliographic system
used by LATEX. Another option is the openXML schema for bibliographies (http://www.
schemacentral.com/sc/ooxml/s-shared-bibliography.xsd.html). Further research is
needed before deciding whether to use one of these existing schemas or to develop a new
version for the particle database. Whichever solution is chosen, it should support storing

16

http://bibtexml.sourceforge.net/
http://bibtexml.sourceforge.net/
http://www.schemacentral.com/sc/ooxml/s-shared-bibliography.xsd.html
http://www.schemacentral.com/sc/ooxml/s-shared-bibliography.xsd.html

DRAFT

(at least) a list of references, each with a unique label, title, authors, publication details,
url or doi, and some descriptive comments.

9.1 Discussion

• Specifications for the bibliography will probably be adopted from one of the projects
mentioned above, so they are not spelled out here.

• Currently the bibliography can appear at the particleDatabase level, within a parti-
cle group, and/or within a specific particle instance. Should it be permitted anywhere
else in the hierarchy?

10 alias

Particles may sometimes be known by more than one name. Examples include the α parti-
cle, which is synonymous with the bare He4 nucleus, and isomeric nuclear states which can
be referred to either by isomer index or by nuclear level index. Rather than requiring that
these particles be listed multiple times (leading to redundancy and possible discrepancies),
the particle database shall avoid redundancy by supporting aliases. Each alias consists of
a unique id, a link to another particle or alias, and optional additional information.

10.1 Specifications

Tag: ‘alias’

Attributes:

id (required): string identifying this alias. The id for every alias (as well as for
every particle) must be unique within the database.

pid (required): string containing the id of the particle that this alias refers to.

other attributes? other optional information may be needed to describe the alias.
These could include descriptive text, a ‘metastable index’, ...

Child elements: None

11 aliases

alias elements can be defined at several different places within the particle database. One
place is at the top level, inside the aliases list.

17

DRAFT

11.1 Specifications

Tag: ‘aliases’

Attributes: None

Child elements: contains a list of 0 or more alias elements

11.2 Example

<aliases>
<alias id="H1" pid="p"/>
...
<alias id="Am242_m1" pid="Am242_e2" metaStableIndex="1"/>

</aliases>

11.3 Discussion:

Do all aliases need to be defined at the same place, or should we allow defining a particle
and its alias(es) at the same place? For example:

<nuclearLevel id="Am242_e2" index="2" alias="Am242_m1">...</nuclearLevel>

One problem with this approach: if a single particle has multiple aliases, only one could be
defined this way. Perhaps each particle should allow an optional aliases sub-element?

See also the discussion on anti-particles in section 17.

12 particle

The remainder of the particleDatabase consists of a list of particles and/or particle groups.
This section defines the general features that are common to all particles. The particle
element can be thought of as the ‘base class’ for storing a particle, from which all other
particle families are derived.

12.1 Specifications

Tag: family name (see section 16).

Attributes:

id: String identifying this particle. Must be unique throughout the entire database
(including particles and aliases). Suggestion: restrict ids to ascii character set?

18

DRAFT

name (optional): In addition to the id (which is meant to be descriptive but short),
the particle may have a more descriptive full name.

date (optional): Can be used to indicate when the particle was added to a database,
or the last time it was modified. Suggestion: make the date required?

Child elements:

documentation (optional): contains documentation specific to this particle. Iden-
tical to the particleDatabase/documentation element described in section 8.

bibliography (optional): contains references specific to this particle, identical to
the particleDatabase/bibliography element described in section 9.

The following child elements are all required unless inherited from higher up in a
particle group (see section 18):

charge: The charge, stored as a quantity group (i.e., charge with one or more quan-
tity elements inside it as described in section 6).

spin: quantity group.

parity: quantity group

mass: quantity group

halflife: quantity group. Quantities may be stored with units of either time or energy,
as in ‘halflife="1 fs"’ or ‘halflife="3.3 GeV"’.

decays (optional): decay information if applicable. See section 15 for details.

12.2 Example

<boson id="photon">
<documentation style="ascii">The photon, first proposed by ...

</documentation>
<charge>

<quantity label="0" value="0" unit="e"/></charge>
<spin>

<quantity label="0" value="1" unit="hbar"/></spin>
<parity>

<quantity label="0" value="1" unit=""/></parity>
<mass>

<quantity label="0" value="0" unit="eV/c**2"/></mass>
<halflife>

<quantity label="0" value="stable" unit="s"/></haflife>

19

DRAFT

</boson>

13 decay

The decay element represents a single decay mode, including type of decay, probability
and a list of products.

13.1 Specifications

Tag: ‘decay’

Attributes:

label (required): Unique label, used when linking to a specific decay mode.
mode (required): String identifying the decay mode. Some possible values include

‘beta-’, ‘beta+’, ‘alpha’, ‘electroMagnetic’, and ‘spontaneousFission’.

Child elements:

probability (required): Decay probability, stored as a particle property (see sec-
tion 6.3). The probability for all decays shall sum to 1.0, to within a tolerance
defined by library managers.

Q (optional): Decay Q-value, stored as a particle property.
ICC (optional): Internal conversion coefficient, stored as a particle property. Meant

for use with ‘electroMagnetic’ decays only.
product (1 or more): a list of product elements, as described in the next section.

14 product

Each decay product is listed individually as a product element.

14.1 Specifications

Tag: ‘product’

Attributes:

pid (required) : a string with the id of the product particle.

Child elements:

energy (optional): Outgoing energy for this product, stored as a set of quantities.
probability (optional): Probability that this product is emitted by the decay.

20

DRAFT

14.2 Discussion

The optional probability element within a product is meant for situations where many
decay spectra are confusing, and rather than breaking up into multiple different decay
elements the evaluator prefers to give a set of products with probabilities.

15 decays

Decay and product data for each product are are organized inside a decays element:

15.1 Specifications

Tag: ‘decays’

Attributes: none

Child elements: list of decay elements, as described in section 13.

15.2 Examples

<baryon id="n" name="neutron">
...
<halflife>

<quantity label="0" value="613.9" unit="s">
<uncertainty value="0.6"/></quantity>

</halflife>
<decays>

<decay mode="beta-">
<probability>

<quantity value="1"/></probability>
<Q>

<quantity label="0" value="782.347" unit="keV">
<uncertainty value="1e-3"/></quantity>

</Q>
<product pid="p"/>
<product pid="e-"/>
<product pid="nu_e-_anti"/>

</decay>
</decays>

</baryon>

21

DRAFT

15.3 Discussion

• Breaking the decays of a particle into multiple independent decay modes is concep-
tually simple, but it may not be flexible enough for all existing data. The particle
database already supports storing gamma-decay and internal conversion decay to-
gether (using the ICC to indicate the relative likelihood of the two modes). Other
types of combined decay info may also need to be supported, especially if ENSDF-style
data are to be stored in the particle database.

• What about storing decays that have a positive Q-value but have not been measured?
Should the database support decay probability limits like ‘<0.01%’? If so, perhaps
the probability should be given as a physical quantity with uncertainty?

• Should there be a special container for the probability? Currently it is treated like
other particle properties as defined in section 6.3. However, unlike the mass or spin,
may not want to allow multiple possible assignments for the probability.

16 Particle families

The particleDatabase can store many different particles. These can be divided into families
with similar properties. The family of any particle can be determined by the tag name used
to store that particle (i.e., ‘boson’, ‘lepton’, ‘baryon’, ‘nuclearLevel’, etc.). Particles belong-
ing to each family may require special attributes beyond the list described in section 12 to
be fully specified.

Particle families currently supported include:

boson: for the photon (also gluon, W and Z if needed)

lepton: e-, muon, tau, neutrinos and their anti-particles. In addition to the basic set of
properties, these also require a generation attribute: for e- and e+ the generation is
‘1’, for the muon it is ‘2’, etc.

quark: Like leptons, quarks require a generation attribute.

baryon: Includes the nucleons ‘n’ and ‘p’ as well as their exotic cousins like ∆, Ξ and Ω.
In addition to basic properties, baryons require isospin and flavour attributes and a
list of their constituent quarks.

meson: Includes π0, K±, η, etc. In addition to basic properties, mesons are classified
by their isospin, flavour, C-parity and G-parity attributes, and a list of constituent
quarks.

nuclearLevel: Includes all ground and excited states of atomic nuclei. In addition to basic
properties, nuclearLevels must store a level index and level energy, and also possibly

22

DRAFT

information on rotational bands. The nuclearLevel is also different from other particle
families in that it does not contain an explicit mass or charge. Instead, these quantities
are inherited from higher up in a particle group, as described in section 18.

17 anti-particles

Particles and their anti-particles are closely related, sharing many properties. The particle
database supports defining a particle and its anti-particle at the same time, using an an-
tiParticle element inside the particle definition. An anti-particle comes along with a set
of rules for converting from the particle to the anti-particle.

17.1 Specifications

Tagname: ‘antiParticle’

Attributes:

id: According to the naming convention defined in section 5, the id for an anti-particle
shall be the particle id + ‘_anti’.

alias (optional): Permits defining one alias for the anti-particle.

Child elements: None

17.2 Example

<lepton id="e-" name="electron">
<mass>

<quantity label="0" value="0.511" unit="MeV/c**2"/></mass>
<charge>

<quantity label="0" value="-1" unit="e"/></charge>
<antiParticle id="e-_anti" alias="e+"/>
...</lepton>

17.3 Discussion

Codes reading this in would be responsible for creating two particles (‘e-’ and ‘e-_anti’) as
well as an alias (‘e+’, pointing to ‘e-_anti’). The two particles have all properties in common
except for their ids, lepton numbers and charge. The relationship between a particle and
its anti-particle depends on the particle family. For a lepton, converting from particle to
anti-particle means multiplying both the charge and lepton number by -1. Where should
these relationships be defined? Should they be part of this specifications document?

23

DRAFT

18 Particle groups

In the particleDatabase, each excited nuclear state is considered to be a unique particle.
However, these nuclear excited state particles have many common properties, and can
be grouped together under the same isotope. Furthermore, isotopes can also be grouped
together by their nuclear charge Z into chemical elements. Grouping similar particles helps
reduce redundancy in the particleDatabase, since it means that common attributes like the
nuclear charge can be stored in one place and inherited by all particles in the group.

Currently, the only defined particle groups are the chemicalElement and isotope,
although a rotationalBand particle group could also be defined to contain nuclearLevels
in the same rotational band. These groups are not particles and do not have ‘id’ attributes.
Instead, they are used to organize particles.

This causes trouble if we want chemicalElement instances to have an id. That may
be justification for keeping the concept of a ‘matter’ type in the database (in addition to
the particle type): matter is not a real particle, but still has an id that we can refer to.

18.1 chemicalElement

18.1.1 Specifications

Tag: ‘chemicalElement’

Attributes:

name: full name of the element, as in ‘Iron’.

symbol: chemical symbol, as in ‘Fe’.

Z: number of protons for this element, stored as an integer.

Child elements:

documentation (optional): documentation common to all isotopes of this element

bibliography (optional): bibliography for all isotopes of this element

qualifiers (optional): See description in section 18.5

isotope (0 or more): described in the next section

18.2 isotope

18.2.1 Specifications

Tag: ‘isotope’

Attributes:

24

DRAFT

name (required): combination of the chemical symbol and the total number of
nucleons ‘A’. For example, ‘Fe56’. See discussion below on the relationship
between the isotope name and the ground state nuclearLevel.

A (required): total number of protons + neutrons, stored as an integer.

Child elements:

documentation (optional): documentation common to all nuclearLevels in this
isotope.

bibliography (optional): bibliography specific to this isotope

qualifiers (optional): see description in section 18.5.

mass (required): The ground state mass of this isotope, stored as quantity group.

nuclearLevels (required): Contains a list of nuclearLevel elements, as described
in section 18.3.

18.3 nuclearLevel

Within the isotope, each nuclearLevel is a unique particle. However, the structure of the
nuclearLevel element is different from that of other particles described in this document,
since some data is inherited from higher up in the particle group. Each nuclearLevel is
organized as follows:

18.3.1 Specifications

Tag: ‘nuclearLevel’

Attributes:

id: the id style is ‘SymA_e#’, as in ‘Mn55_e2’ for the excited state of Mn55 with
levelIndex="2".

levelIndex: the excited state index stored as an integer.

Child elements: the nuclearLevel contains the same elements as other particles, except
that it normally does not contain ‘mass’ or ‘charge’ particle properties since they are
inherited from the parent isotope. Also, it contains the following:

energy: the excitation energy for this level, stored as a particle property.

band (optional): identifies the rotational band (if any) that this nuclearLevel be-
longs to.

25

DRAFT

18.3.2 Discussion

Should the nuclearLevels element support flags telling how complete the level information
is (similar to RIPL’s ‘max complete’ flag)?

18.4 Examples

<chemicalElement name="Manganese" Z="25" symbol="Mn">
<isotope name="Mn55" A="55">

<mass recommended=‘quantity[@label="atomic"]’>
<quantity label="atomic" value="44.00687" uncertainty="5.4e-4" unit="amu"/>
<!-- other values of mass if applicable -->

</mass>
<nuclearLevels>

<nuclearLevel id="Mn55_e0" index="0" alias="Mn55">
<energy>

<quantity label="0" value="0" unit="eV"/></energy>
<spin>

<quantity label="0" value="5/2" unit="hbar"/></spin>
<parity>

<quantity label="0" value="-1" unit=""/></parity>
<halflife>

<quantity label="0" value="stable" unit="s"/></halflife>
</nuclearLevel>
<nuclearLevel id="Mn55_e1" index="1">

<energy>
<quantity label="0" value="125.949" unit="keV"/></energy>

<spin>
<quantity label="0" value="7/2" unit="hbar"/></spin>

<parity>
<quantity label="0" value="-1" unit=""/></parity>

<halflife>
<quantity label="0" value="2.59e-10" unit="s"/></halflife>

<decays>
<decay index="0" mode="gamma">

<probability>
<quantity label="0" value="1.0" unit=""/></probability>

<product pid="Mn55_e0"/>
<product pid="gamma"/>

</decay>
</decays>

26

DRAFT

</nuclearLevel>
...

</nuclearLevels>
</isotope>

</chemicalElement>

Second example:

<chemicalElement name="Magnesium" Z="12" symbol="Mg">
<isotope name="Mg32" A="32">

<mass recommended=‘quantity[@label="atomic"]’>
<quantity label="atomic" value="31.998975" unit="amu">

<uncertainty value="1.9e-5"/></quantity>
</mass>
<nuclearLevels>

<nuclearLevel id="Mg32_e0" index="0" alias="Mg32">
<energy>

<quantity label="0" value="0" unit="eV"/></energy>
<spin>

<quantity label="0" value="0" unit="hbar"/></spin>
<parity>

<quantity label="0" value="1" unit=""/></parity>
<halflife>

<quantity label="0" value="0.095" unit="s"/><halflife>
<decays>

<decay index="0" mode="betaMinus">
<probability>

<quantity label="0" value="0.97656" unit=""/></probability>
<Q>

<quantity label="0" value="10.1" unit="MeV"/></Q>
<product pid="Al32"/>
<product pid="e-"/>
<product pid="nu_e-_anti"/></decay>

<decay index="1" mode="betaMinusDelayedNeutron">
<probability>

<quantity label="0" value="0.02344" unit=""/></probability>
<product pid="Al31"/>
<product pid="n"/>
<product pid="e-"/>
<product pid="nu_e-_anti"/></decay></decays>

27

DRAFT

</nuclearLevel>
<nuclearLevel id="Mg32_e1" index="1">

...
</nuclearLevels>

</isotope>
</chemicalElement>

Discussion: • The reader may observe that the isotope is not being treated as a
particle: it does not have an id attribute. However, since the isotope name
is often synonymous with the ground state of that isotope, an alias has been
entered in the ground state nuclearLevel in both examples, so that ‘Mn55’ is an
alias for ‘Mn55_e0’ and ‘Mg32’ is an alias for ‘Mg32_e0’.

18.5 qualifiers

Users of particle databases may need information about electron configurations in atoms
and molecules. These add a new dimension to the space of particles. While it is feasible
to treat every excited nuclear state (for every isotope) as a unique particle with its own id,
adding the new dimension of possible electron configurations for each of those states would
make the particle database unwieldy. TODO: add brief discussion of size required just to
store all these names.

To resolve this problem, the particle database permits storing ‘qualifiers’ that are used to
add extra information to a given particle. The main purpose of qualifiers (at least for now)
will be to describe electron configurations and atomic relaxation. Since these properties are
element-specific (and in some rare cases isotope-specific), the qualifiers are defined within
a ‘chemicalElement’ and/or ‘isotope’.

Each qualifier is a string that can be appended to a particle id inside braces ‘{’ and ‘}’.
More than one qualifier can be stored in the braces as a ‘;’-delimited list.

Need to flesh out this discussion further. It is likely to change as we start handling
more decay and atomic relaxation data. Also, are qualifiers flexible enough to handle
simple molecules in addition to excited or ionized atoms? If not, do we need to come up
with special types of particles to support S(α, β) (thermal scattering) data?

19 Final discussion

• The particle database currently does not contain any information about natural abun-
dances of different chemical elements. While this is important information, it was
decided that abundance is not a property of the element, but rather of the location
where the element is found: chemical abundances vary at different locations both on

28

DRAFT

earth and throughout the rest of the universe. These data should be stored in an
external database instead.

• The particleDatabase can be divided up into multiple files (for example, one file per
chemicalElement). Do we need any explicit rules for how to handle that (i.e. require
an explicit link to the file containing the subsection)?

• For a particle that is actually made up of smaller constituent particles, should the
particle database support storing the list of constituents? For nucleons this is straight-
forward (a list of up and down quarks with multiplicities), but many other particles
are actually a superposition of states rather than a simple composition.

References

[1] XML Linking Language (XLink) Version 1.1. See: http://ww.w3.org/TR/xlink11

29

	Introduction
	Definitions
	Requirements
	Discussion

	Specifications overview
	Particle naming schemes
	Specifications

	Physical quantities and uncertainty
	quantity
	Specifications

	uncertainty
	Specifications

	Particle property
	Specifications

	Examples
	Discussion

	particleDatabase
	Specifications
	Example

	documentation
	Specifications
	Discussion

	bibliography
	Discussion

	alias
	Specifications

	aliases
	Specifications
	Example
	Discussion:

	particle
	Specifications
	Example

	decay
	Specifications

	product
	Specifications
	Discussion

	decays
	Specifications
	Examples
	Discussion

	Particle families
	anti-particles
	Specifications
	Example
	Discussion

	Particle groups
	chemicalElement
	Specifications

	isotope
	Specifications

	nuclearLevel
	Specifications
	Discussion

	Examples
	qualifiers

	Final discussion

