**Overview of proposed** new format, its similarities and differences compared to **ENDF-6** 

> David Brown NNDC, BNL



a passion for discovery



Office of

# This talk is in some ways premature

#### Requirements are due now

- Draft doc nearly complete
- Core of this round of subgroup results
- Hopefully can finalize it this week

#### Specifications are next step

- Low level containers mostly done
- Properties Of Particles mostly done
- Top Level in progress

#### Many more steps to follow:

- API,
- processing, etc.,
- documentation,
- QA,
- governance

It is difficult to explain all the differences when format is undergoing major revisions



# This talk is in some ways premature

#### Requirements are due now

- Draft doc nearly complete
- Core of this round of subgroup results
- Hopefully can finalize it this week

#### Specifications are next step

- Low level containers mostly done
- Properties Of Particles mostly done
- Top Level in progress

#### Many more steps to follow:

- API,
- processing, etc.,
- documentation,
- QA,
- governance

It is difficult to explain all the differences when format is undergoing major revisions

That said, we have a nearly complete prototype (GND) and expect final format to be very similar



#### These are the requirements that we've gathered from you, the nuclear data community

#### Requirements for a next generation nuclear data format

OECD/NEA/WPEC SubGroup 38\*

(Dated: April 1, 2015)

This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as is found in the ENDF format. This set of requirements will be used to guide the development of a new set of formats to replace the legacy ENDF format.

#### CONTENTS

| Ι.  | Introduction                                         | 2  |
|-----|------------------------------------------------------|----|
|     | A. Scope of data to support                          | 3  |
|     | B. How to use these requirements                     | 4  |
|     | C. Main requirements                                 | 4  |
|     | D. Hierarchal structures                             | 5  |
|     | E. Complications                                     | 6  |
|     | 1. Is it a material property or a reaction property? | 6  |
|     | 2. Different optimal representation in different     |    |
|     | physical regions                                     | 7  |
|     | 3. Ensuring consistency                              | 7  |
|     | 4. Legacy data                                       | 7  |
|     | 5. Special cases                                     | 8  |
| II. | Common motifs                                        | 8  |
|     | A. Documentation                                     | 8  |
|     | B. What data are derived from what other data?       | 11 |
|     | C. Product list elements                             | 13 |

|       | H. Examples of covariance data usage in this hierarchy   | 48 |
|-------|----------------------------------------------------------|----|
| VII.  | Required low-level containers                            | 49 |
|       | A. The lowest-level                                      | 51 |
|       | B. General data containers                               | 52 |
|       | C. Text                                                  | 53 |
|       | D. Hyperlinks                                            | 53 |
|       |                                                          |    |
| VIII. | Special reaction case: Atomic Scattering Data            | 54 |
|       | A. Incoherent Photon Scattering                          | 55 |
|       | B. Coherent Photon Scattering                            | 55 |
|       |                                                          |    |
| IX.   | Special reaction case: Particle production or Spallation |    |
|       | reactions                                                | 56 |
|       |                                                          |    |
| Х.    | Special reaction case: Radiative capture                 | 56 |
| 377   |                                                          |    |
| XI.   | Special reaction case: Fission                           | 57 |
|       | A. Introduction                                          | 57 |
|       |                                                          |    |

# Main goals/requirements

- The hierarchy should *reflect our understanding of nuclear reactions and decays*, clearly and uniquely specifying all such data.
- 2. It should *support storing multiple representations of these quantities simultaneously*, for example evaluated and derived data.
- 3. It should *support both inclusive and exclusive reaction data*, that is discrete reaction channels as well as sums over multiple channels.
- 4. It should use *general-purpose data containers* suitable for reuse across several application spaces.
- 5. It should eliminate redundancy where possible.
- As a corollary to requirements 1 and 2, *multiple representations of* the same data should be stored as closely together in the hierarchy as feasible.



# What data is stored?

- All reaction data stored currently in ENDF
  - nuclear (n, TSL, charged particle, gammas)
  - atomic (e, gamma)

#### Covariance data

- all that is in current ENDF
- requested areas (FPY, decays)
- framework more general so possible in many more data types

#### Particle properties

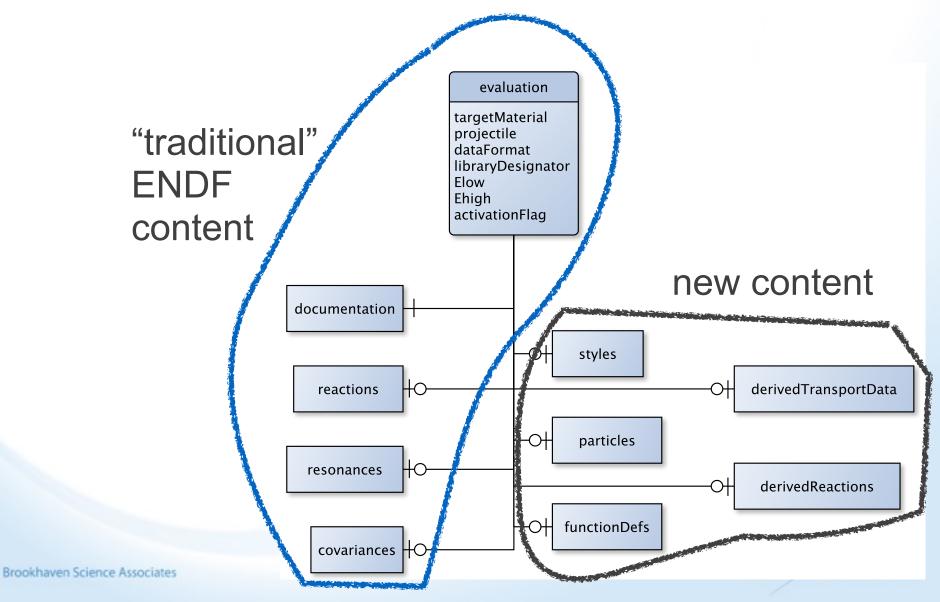
- Decay data from ENDF
- Atomic relaxation data from ENDF
- potential for common, unified mass table
- potential for level information (most requested new feature)
  ... right now take from RIPL

support all legacy ENDF data is implicit

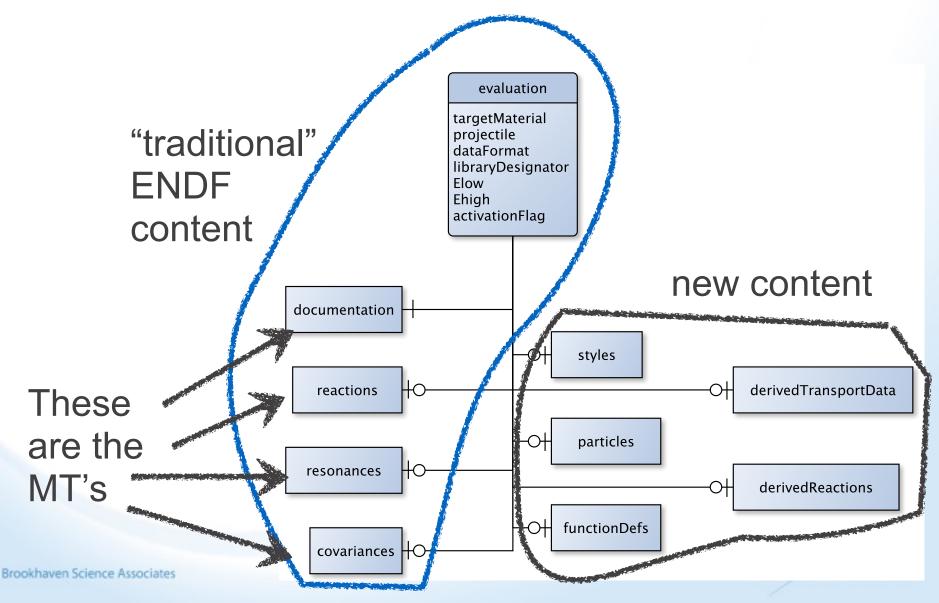
The need to

6




- Hierarchy is physics guided
- Not just one format, any hierarchical meta-format can be used (XML, JSON, HDF5, BOF, Python)
- Use of hyperlinks
- Derived & original data may coexist in same file
- Covariance/uncertainties near data
- Unified covariance framework
- Unified resonance framework based on ENDF LRF=7
- Potential for centralized particle properties
- Use of generic low level structures (equivalent but modern versions of ENDF TAB1, TAB2, etc.)



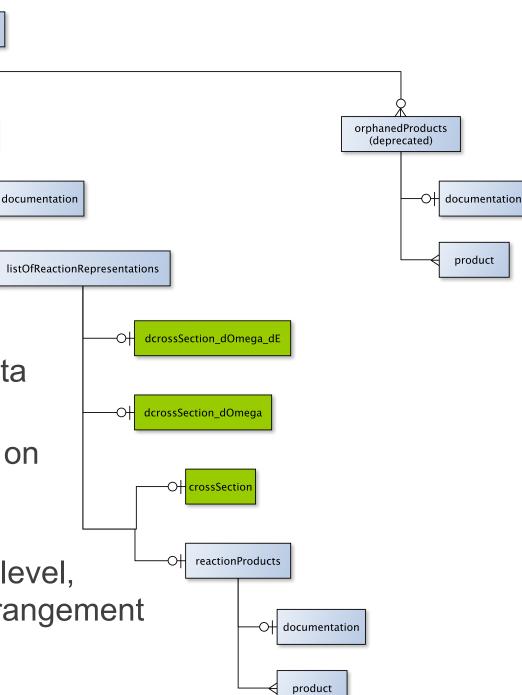

- Hierarchy is physics guided
- Not just one format, any hierarchical meta-format can be used (XML, JSON, HDF5, BOF, Python)
- Use of hyperlinks
- Derived & original data may coexist in same file
- Covariance/uncertainties near data
- Unified covariance framework
- Unified resonance framework based on ENDF LRF=7
- Potential for centralized particle properties
- Use of generic low level structures (equivalent but modern versions of ENDF TAB1, TAB2, etc.)

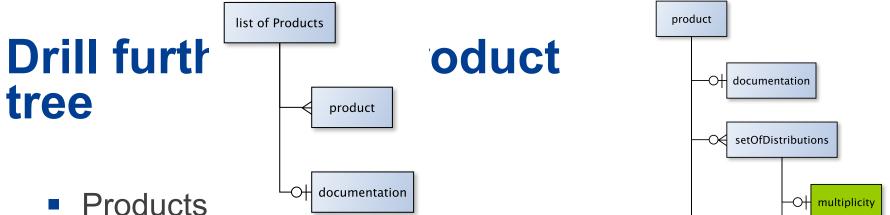


### **Organization of** *reaction data*

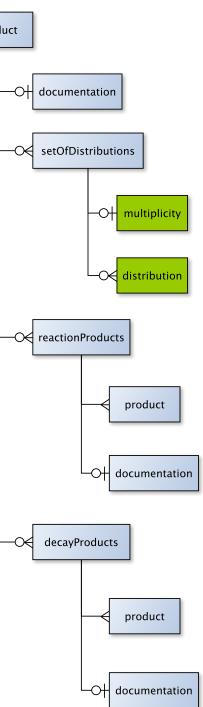


### **Organization of** *reaction data*





### **Drill into** reactions

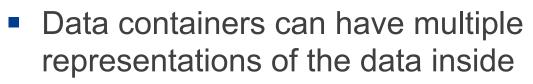
- Note: documentation allowed at nearly any level
- Place for obsolete data
- Various cross section schemes, depending on need
- Detailed product distributions at lower level, but have common arrangement


reactions

reaction






- multiplicities (they may be constant)
- all distributions P(E',m|E) (MF=6, LANGS; MF=4,5, MF=12,13,14,15)
- Reaction products can have reactionProducts or decayProducts underneath
  - This enables breakup reactions
  - Common scheme for decay data in particle properties and in reaction data



- Hierarchy is physics guided
- Not just one format, any hierarchical meta-format can be used (XML, JSON, HDF5, BOF, Python)
- Use of hyperlinks
- Derived & original data may coexist in same file
- Covariance/uncertainties near data
- Unified covariance framework
- Unified resonance framework based on ENDF LRF=7
- Potential for centralized particle properties
- Use of generic low level structures (equivalent but modern versions of ENDF TAB1, TAB2, etc.)



### Sketch how to store different versions simultaneously



reactions

reaction 0

crossSection 0

listOfDataRepresentations

data version 0

derivedFromLink = None

. | Sig(E) ......

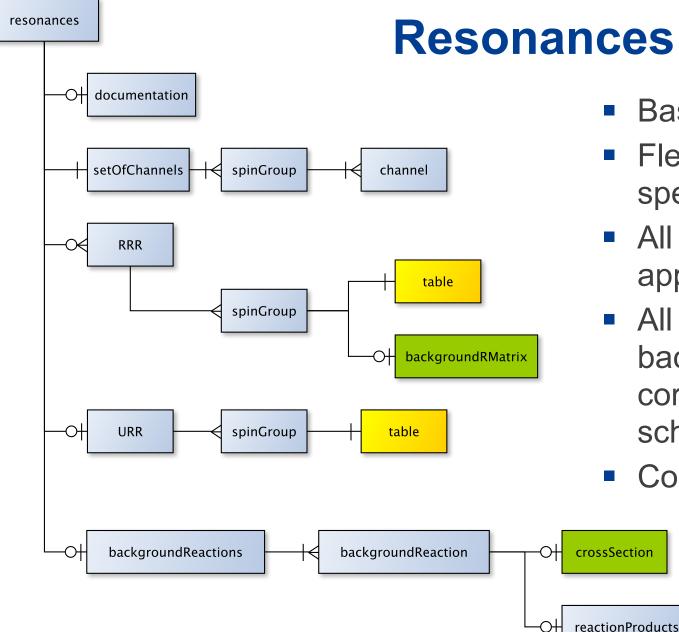
linkToOriginalData

- If possible, covariance & uncertainty must be near data
- It should be possible to store a covariance or an uncertainty and correlation
- Hyperlinks tell you what is derived

covariance 0.0

data version 1

derivedFromLink = data version 0 derivedFromLink = covariance 0.0


Sig(E) | dSig(E)

... | .... | ...

- Hierarchy is physics guided
- Not just one format, any hierarchical meta-format can be used (XML, JSON, HDF5, BOF, Python)
- Use of hyperlinks
- Derived & original data may coexist in same file
- Covariance/uncertainties near data
- Unified covariance framework
- Unified resonance framework based on ENDF LRF=7
- Potential for centralized particle properties
- Use of generic low level structures (equivalent but modern versions of ENDF TAB1, TAB2, etc.)



15



- Based on LRF=7
- Flexible channel specification
- All ENDF approximations
- All ENDF
  background
  correction
  schemes
- Common format

- Hierarchy is physics guided
- Not just one format, any hierarchical meta-format can be used (XML, JSON, HDF5, BOF, Python)
- Use of hyperlinks
- Derived & original data may coexist in same file
- Covariance/uncertainties near data
- Unified covariance framework
- Unified resonance framework based on ENDF LRF=7
- Potential for centralized particle properties
- Use of generic low level structures (equivalent but modern versions of ENDF TAB1, TAB2, etc.)



17

### **Specifications for** *particle properties*

#### Requirements and specifications for a particle database

WPEC Subgroup 38

May 13, 2015

| Contents |                                     |          |
|----------|-------------------------------------|----------|
| 1        | Introduction                        | 3        |
| <b>2</b> | Definitions                         | 4        |
| 3        | Requirements                        | <b>5</b> |
|          | 3.1 Discussion                      | 6        |
| 4        | Specifications overview             | 8        |
| <b>5</b> | Particle naming schemes             | 9        |
|          | 5.1 Specifications                  | 9        |
| 6        | Physical quantities and uncertainty | 10       |
|          |                                     | 10       |

Brook

- Hierarchy is physics guided
- Not just one format, any hierarchical meta-format can be used (XML, JSON, HDF5, BOF, Python)
- Use of hyperlinks
- Derived & original data may coexist in same file
- Covariance/uncertainties near data
- Unified covariance framework
- Unified resonance framework based on ENDF LRF=7
- Potential for centralized particle properties
- Use of generic low level structures (equivalent but modern versions of ENDF TAB1, TAB2, etc.)



# **Specification of low level data containers**

General-Purpose Data Containers for Science and Engineering<sup>\*</sup>

OECD/NEA/WPEC Subgroup 38

April 27, 2015

#### Hopefully we've captured your input see <u>https://www.oecd-nea.org/science/</u> wpec/sg38/top\_level\_hierarchy.pdf

#### Requirements for a next generation nuclear data format

OECD/NEA/WPEC SubGroup 38\*

(Dated: April 1, 2015)

This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as is found in the ENDF format. This set of requirements will be used to guide the development of a new set of formats to replace the legacy ENDF format.

#### CONTENTS

| Ι.  | Introduction                                         | 2  |
|-----|------------------------------------------------------|----|
|     | A. Scope of data to support                          | 3  |
|     | B. How to use these requirements                     | 4  |
|     | C. Main requirements                                 | 4  |
|     | D. Hierarchal structures                             | 5  |
|     | E. Complications                                     | 6  |
|     | 1. Is it a material property or a reaction property? | 6  |
|     | 2. Different optimal representation in different     |    |
|     | physical regions                                     | 7  |
|     | 3. Ensuring consistency                              | 7  |
|     | 4. Legacy data                                       | 7  |
|     | 5. Special cases                                     | 8  |
| II. | Common motifs                                        | 8  |
|     | A. Documentation                                     | 8  |
|     | B. What data are derived from what other data?       | 11 |
|     | C. Product list elements                             | 13 |

|       | H. Examples of covariance data usage in this hierarchy   | 48 |
|-------|----------------------------------------------------------|----|
| VII.  | Required low-level containers                            | 49 |
|       | A. The lowest-level                                      | 51 |
|       | B. General data containers                               | 52 |
|       | C. Text                                                  | 53 |
|       | D. Hyperlinks                                            | 53 |
|       |                                                          |    |
| VIII. | Special reaction case: Atomic Scattering Data            | 54 |
|       | A. Incoherent Photon Scattering                          | 55 |
|       | B. Coherent Photon Scattering                            | 55 |
|       |                                                          |    |
| IX.   | Special reaction case: Particle production or Spallation |    |
|       | reactions                                                | 56 |
| Х.    | Special reaction case: Radiative capture                 | 56 |
|       |                                                          |    |
| XI.   | Special reaction case: Fission                           | 57 |
|       | A. Introduction                                          | 57 |