Report on U.S. Experimental Activities

WPEC 2021

Yaron DANON

CSEWG measurements committee chair, on behalf of CSEWG Rensselaer Polytechnic Institute, Troy, NY 12180, USA

WPEC, May 13, 2021, via Webex

Introduction

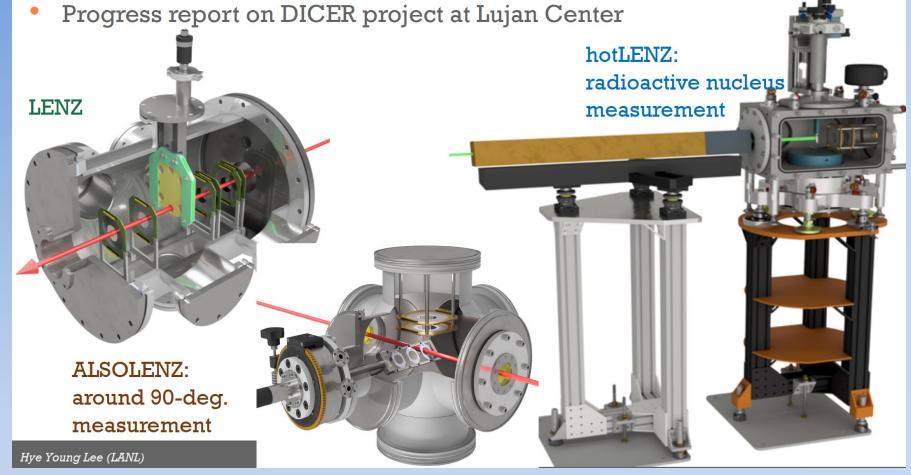
- This update is based on presentations during the November 2020 CSEWG meeting.
- A link to full presentations:

https://indico.bnl.gov/event/7233/timetable/#20201130.detailed

- Reports from different laboratories:
 - 1. Updates on nuclear data experiments at LANSCE I, Hye Young Lee (LANL)
 - Updates on nuclear data experiments at LANSCE II, Keegan Kelly (LANL)
 - 3. New UML capability for measurements of nuclear data capture gammas from Mn-56, Marian Jandel (UML)
 - 4. Neutron-induced neutron emission from U-235 and Pu-239, Kumar Mohindroo, (RPI)
 - 5. Hf(n,tot) Measurement in the High Energy Region at the RPI LINAC, (NNL/RPI)
 - 6. Berkeley Nuclear Data Measurements Program, Jonathan Morrell, (UCB)
 - 7. University of Kentucky Accelerator Laboratory Activities, Jeffrey Vanhoy, (UKAL)
 - 8. YHx data measured at the SNS, Chris Chapman, (ORNL)
 - 9. Partial and differential (α,n) cross section measurements on boron, carbon, and oxygen isotopes, James deBoer (**UND**)

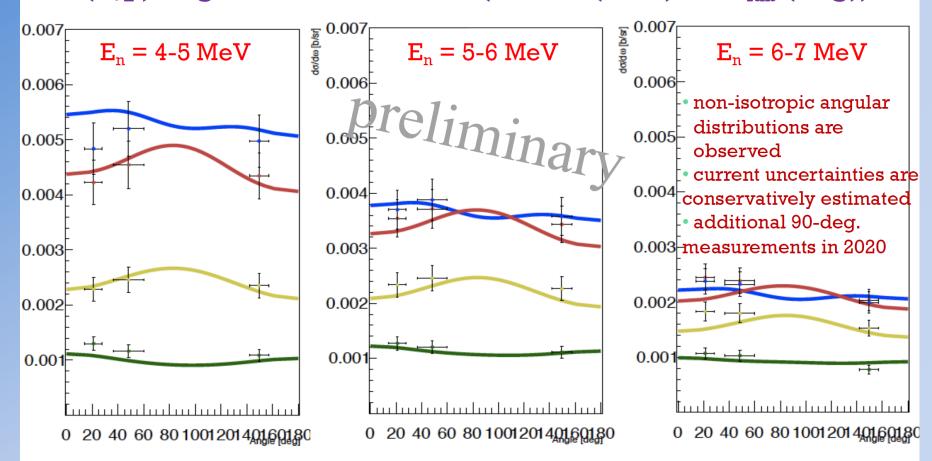
This report represents only part of the U.S. nuclear data activity.

WPEC 2021


Los Alamos National Laboratory

- LANL experimental updates on LENZ and DICER in FY20. (LANL)
 - ⁵⁶Fe(n, α) LENZ data analysis
 - Diamond data- ^{12,13}C(n,z) reaction
 - 56,58,59,60 Ni(n,z) LENZ measurements and data analysis
 - DICER update (neutron transmission with mm size beam)
- Scattering Analysis with the Chi-Nu Liquid Scintillators

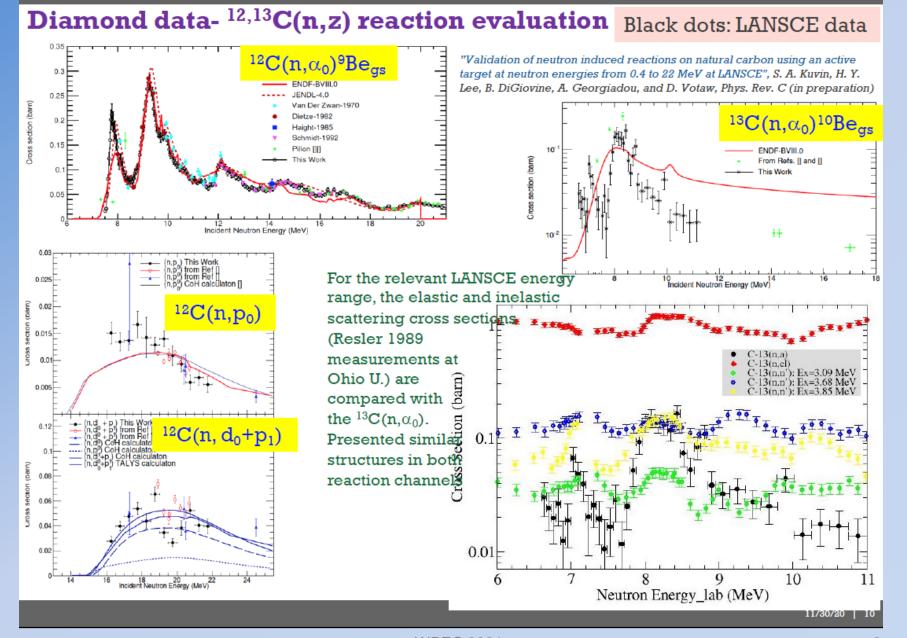
Contents


- Double differential cross sections on 54 Fe(n,p) and 56 Fe(n, α)
- Validation of neutron induced reactions on $^{\rm nat}$ C, using an active target at 0.4 MeV < E $_{\rm n}$ < 22 MeV

Progress report on ^{56,58,59,60}Ni(n,p) reaction studies at WNR

WPEC 2021

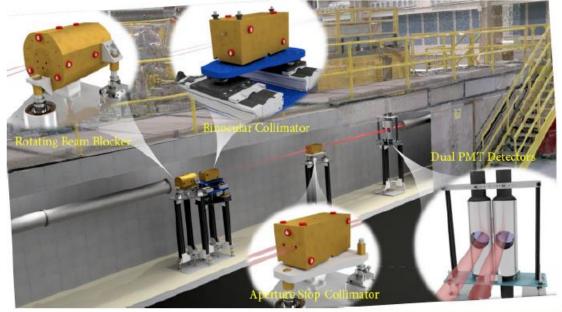
⁵⁴Fe(n,p) angular distributions (dσ/dΩ (b/sr) vs. θ_{lab} (deg))

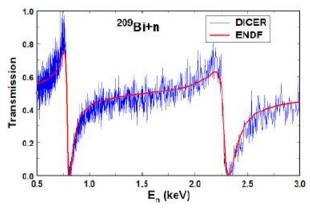

-dots are LENZ measurements

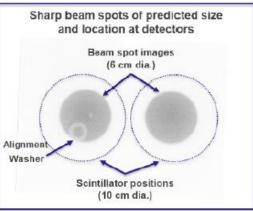
-Solid lines show newly calculated angular distributions, where Legendre coefficients are explicitly calculated. Details of this work will be presented by H.I. Kim in Evaluation Session.

Red: (n,p_0) , Blue: (n,p_1) , Yellow: (n,p_2) , Green: (n,p_3)

WPEC 2021

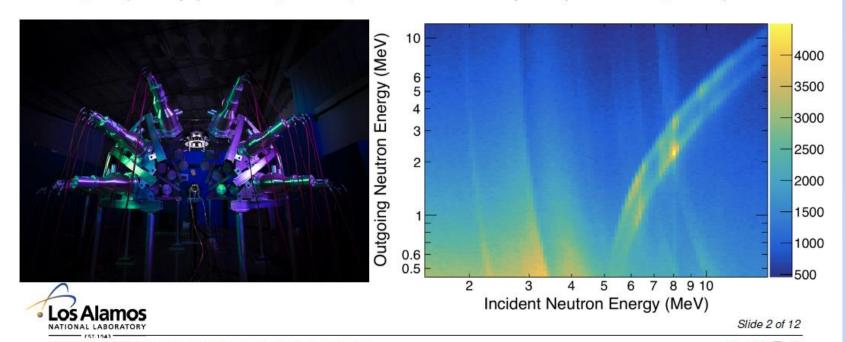

5




PI: Paul Koehler

DICER Update

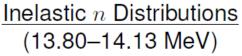
- 1-mm-diameter binocular collimator system installed and successfully tested Measurements on 95Mo and 209Bi in agreement with previous results
 Cuts experiment time in half and minimizes required sample
- Three acceptable chemistries for 88Zr sample identified DICER experiment scheduled for summer 2021
- Completed DICER
 measurement with liquid
 argon sample
 Motivated by DUNE neutrino
 experiment, led by UC Davis

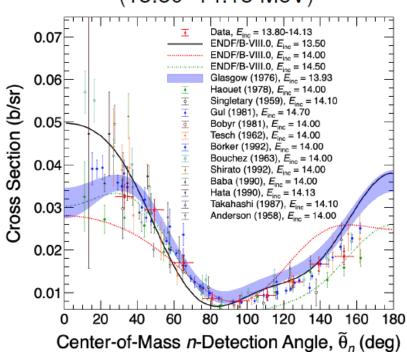


11/30/20 | 13

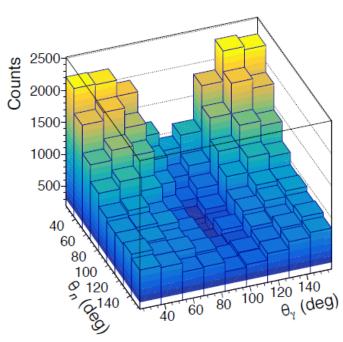
Scattering Analysis with the Chi-Nu Liquid Scintillators

- ullet Liquid scintillators have poor decent PSD and timing, but γ energy resolution
- Can still learn about a more ideal n- γ using this array
- Start with easy case: natural carbon
 - Note: utilized the RPI sample changer for these measurements


Begin by simply looking for n- γ coincidence in post-processing analysis



Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA


Correlated n- γ Distributions Collected as Well

Extract n angular distributions from elastic scattering and correlated n- γ distributions from inelastic scattering

Correlated n- γ Distributions (6.17–6.31 MeV)

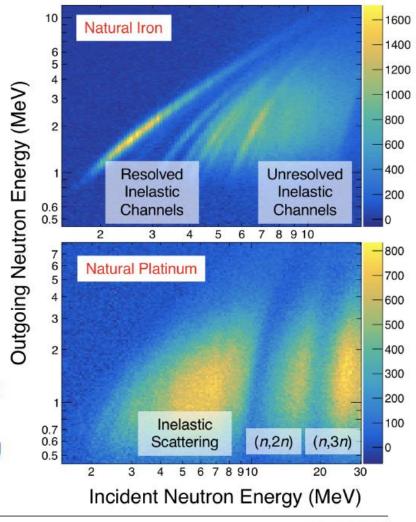
Very few experiments have measured n- γ distributions

 \rightarrow Measured at limited energies and angles

Slide 6 of 12

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

WPEC 2021


Measurements of Fe and Pt Show Capabilities

Natural Fe

- Separation of low-lying states is possible
- Extensions to lower energies could separate more states
- Shows separation limitations based on level density

Natural Pt

- Six naturally-occurring Pt isotopes
- Continuously high net level density
- Clearly observe onset of (n,2n) and (n,3n) channels
 - Separable from inelastic scattering

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

University of Massachusetts Lowell

 New UML capability for measurements of nuclear data: capture gammas from Mn-56

M. Jandel, CSWEG 2020, 11/30/2020

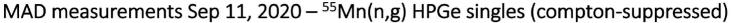
UMASS LOWELL RESEARCH REACTOR (UMLRR)

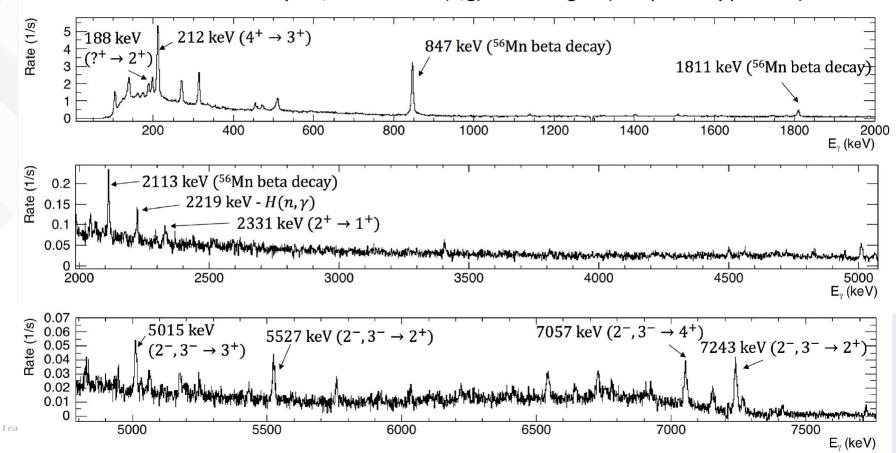
- Open pool with 75,000 gallons of demineralized water
- High-density, steel reinforced concrete (Approx. 1000 tons) surrounds the pool
- 1 MW power
- 2.5 x 10¹³ neutrons/cm²/s in core
- Many facilities available for research including thermal column, beam ports, fast neutron irradiator, pneumatic sample irradiation system.

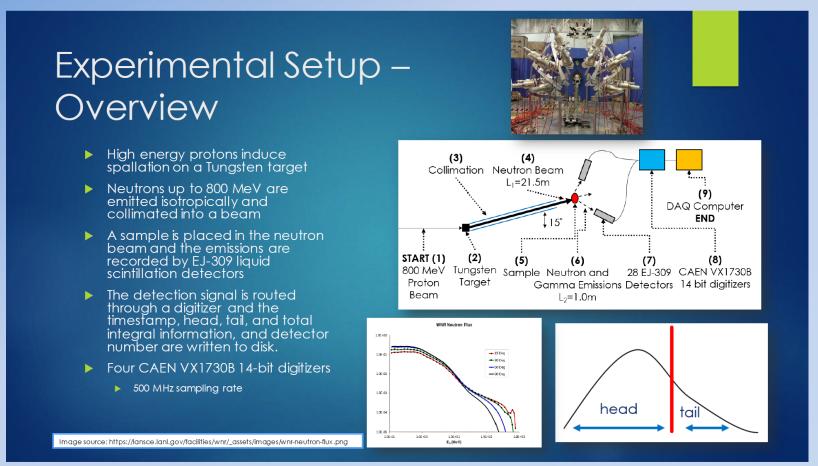
UMASS

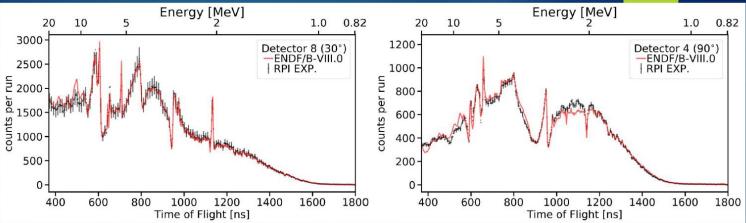
Learning with Purpose

UML - DATA ON 55MN(N,G)

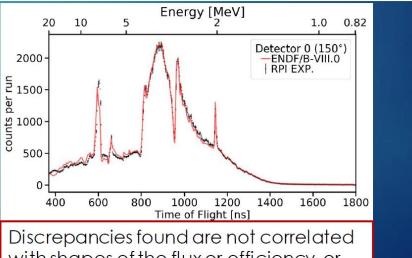

- Data obtained at full reactor power of 1 MW
- DAQ handles high rates well


Learning with Purpose

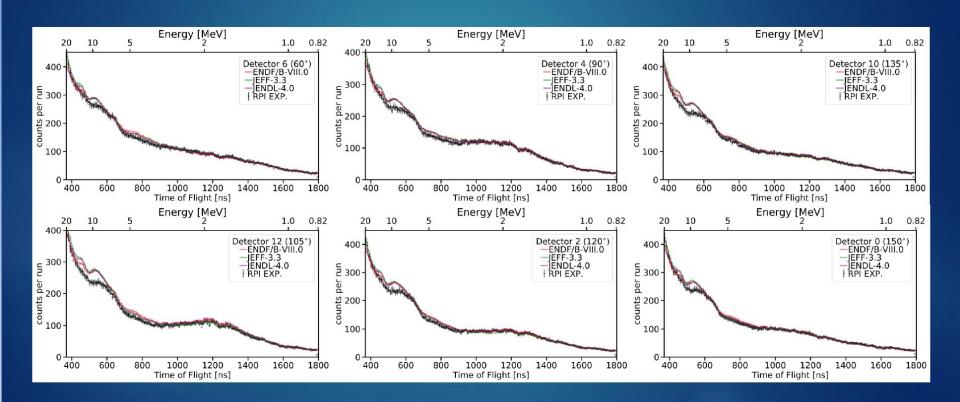

UML - DATA ON 55MN(N,G)



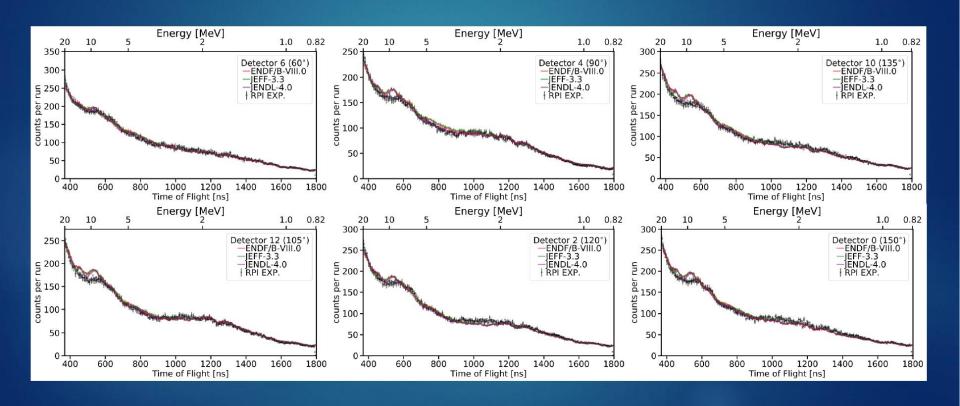
Nuclear data measurement and analysis at RPI


Neutron Induced Neutron Emission in U-235 and Pu-239

Carbon



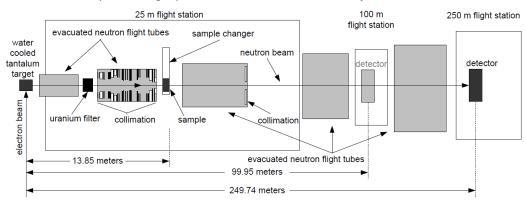
- Overall Carbon measurements and simulation are in good agreement at all angles
- For some angles and incident neutron energies differences are observed
- Further investigation of carbon double differential cross section might be needed



Discrepancies found are not correlated with shapes of the flux or efficiency, or discrepancies found in ²³⁵U and ²³⁹Pu.

²³⁵U – Angles ≥ 60°

²³⁹Pu – Angles ≥ 60°

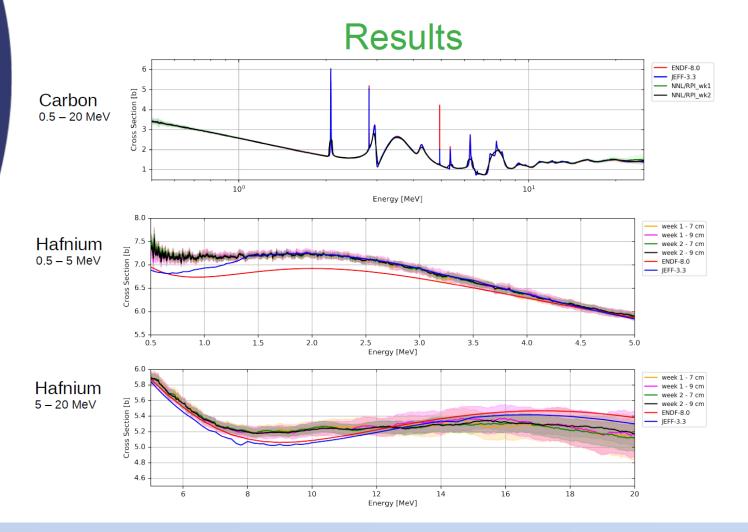


Nuclear data measurement and analysis at RPI (NNL talk)

Hf(n,tot) Measurement in the High Energy Region at the RPI LINAC

High Energy Transmission System at RPI

- Located at the Gaerttner Linear Accelerator (LINAC) Center at Rensselaer Polytechnic Institute (RPI)
- · Large area, modular, liquid scintillation detector
 - Located at 250 meter time-of-flight station
 - Long flight path, narrow neutron burst width, fast detector and electronics
 - High-accuracy transmission measurements (~1% 3%)
 - Excellent counting rate, good signal-to-noise
 - Measurement range of ~0.5 to ~20 MeV
- · Fission chambers on independent flight path monitor neutron beam stability


Hf Samples

- 99.9% pure Hf
- Samples
 - 7 cm (2 3.5 cm thick cylinders stacked)
 - 9 cm (2 4.5 cm thick cylinders stacked)
 - 13 cm thick carbon reference

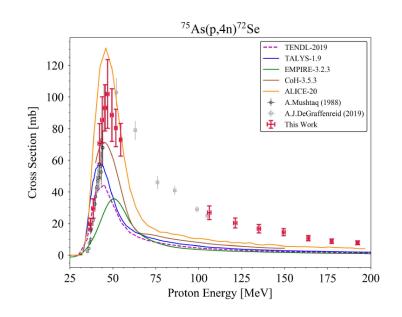
Impurity	PPM	Impurity	PPM	Impurity	PPM	Impurity	PPM
Ag	0.44	Al	0.4	As	< 0.005	Au	< 0.5
В	< 0.005	Ba	< 0.005	Be	< 0.005	Bi	< 0.05
Br	< 0.005	Ca	0.008	Cd	< 0.5	Ce	< 0.005
Cl	0.097	Co	0.16	Cr	1.51	Cs	< 0.005
Cu	0.038	Dy	< 0.005	Er	< 0.005	Eu	< 0.003
F	< 0.5	Fe	54.2	Ga	< 0.005	Ge	< 0.003
Hg	<5	Но	< 0.005	I	< 0.05	In	< 0.003
Ir	0.89	K	0.031	La	< 0.005	Li	< 0.003
Lu	< 0.005	Mg	< 0.005	Mn	0.043	Mo	< 0.003
Na	0.013	Nb	< 0.005	Nd	< 0.005	Ni	0.99
Os	< 0.5	P	0.009	Pb	< 0.05	Pd	< 0.05
Pr	< 0.005	Pt	< 0.5	Rb	< 0.005	Re	< 0.003
Rh	< 0.005	Ru	< 0.005	S	0.77	Sb	< 0.05
Sc	0.007	Se	< 0.05	Si	1.66	Sm	< 0.003
Sn	< 0.05	Sr	< 0.005	Ta	0.22	Tb	< 0.003
Te	< 0.05	Th	< 0.005	Ti	0.31	Tm	< 0.00
U	< 0.005	V	< 0.005	W	0.015	Y	< 0.003
Yb	< 0.005	Zn	0.029	Zr	0.576		

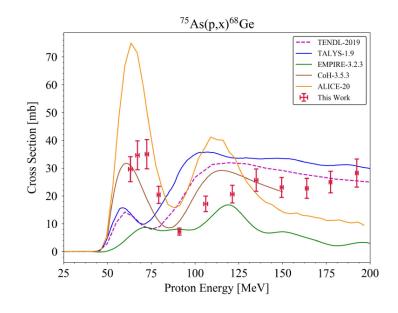
Sample	thickness	diameter	mass	areal number density	
	(cm)	(cm)	(g)	(atoms/b)	
Hf-35mm-01	3.505 ± 0.004	5.081 ± 0.003	938.4 ± 0.1	0.1562 ± 0.0002	
Hf-35mm-02	3.508 ± 0.002	5.088 ± 0.002	941.6 ± 0.1	0.1563 ± 0.0001	
Hf-45mm-01	4.507 ± 0.002	5.089 ± 0.002	1209.9 ± 0.1	0.2007 ± 0.0001	
Hf-45mm-02	4.505 ± 0.002	5.082 ± 0.002	1206.5 ± 0.1	0.2007 ± 0.0001	
7cm Hf sample	7.012 ± 0.004	5.084 ± 0.002	1880.0 ± 0.1	0.3124 ± 0.0001	
9cm Hf sample	9.012 ± 0.002	5.086 ± 0.001	2416.4 ± 0.1	0.4013 ± 0.0001	

Cross Section measurements at LBNL and UC-Berkeley

Fission

 FLUFFY - Independent fission product yields for shortlived isotopes

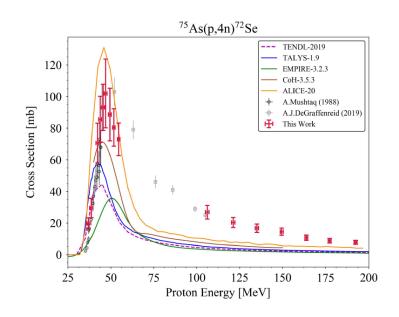

Neutron Scattering

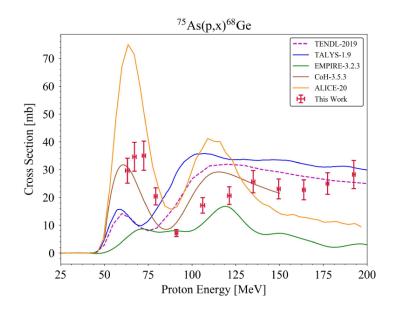

GENESIS - Inelastic scattering on ⁵⁶Fe, ²³⁸U for fast-reactor applications

Isotope Production

- ⁷⁵As(p,x)⁷²Se & ⁷⁵As(p,x)⁶⁸Se *PET Imaging*
- nat Sb(p,x) 117m Sn Therapeutic/Diagnostic
- ²²⁶Ra(n,2n)²²⁵Ra -> ²²⁵Ac Targeted Alpha Therapy
- Secondary Neutrons from Deuteron Breakup
- 232 Th(p,4n) 229 Pa -> 229 Th Long lived 225 Ac generator

⁷⁵As(p,x) Reactions from 35-200 MeV


Large body of high-energy reaction data (many channels, up to 200 MeV)


Modeling is particularly sensitive to pre-equilibrium

⁷⁵As(p,x) Reactions from 35-200 MeV

Large body of high-energy reaction data (many channels, up to 200 MeV)

Modeling is particularly sensitive to pre-equilibrium

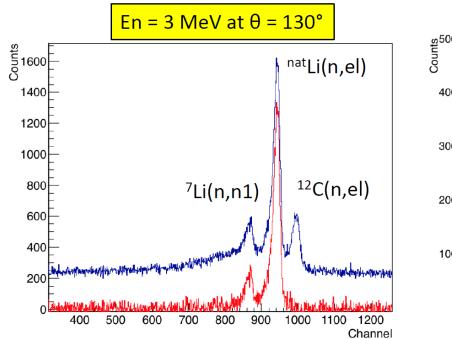
University of Kentucky Accelerator Laboratory Activities

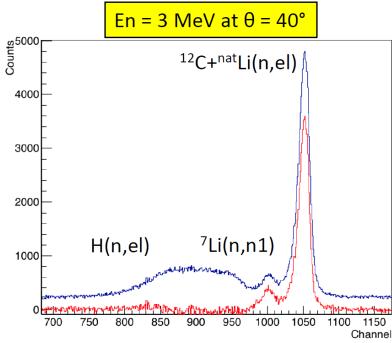
University of Kentucky Accelerator Laboratory (UKAL)

- > 7-MV single-ended Van de Graaff accelerator
- \triangleright p, d, ³He and α beams
- pulsed and bunched beam:
 - f = 1.875 MHz and $\Delta t \sim 1$ ns
- primarily conducts neutron-induced reactions and scattering experiments

Basic Nuclear Science

- Nuclear structure via (n,n'γ)
 - Level Schemes and Transitions
 - Spectroscopic Information
 - DSAM Lifetimes


Applied Nuclear Science

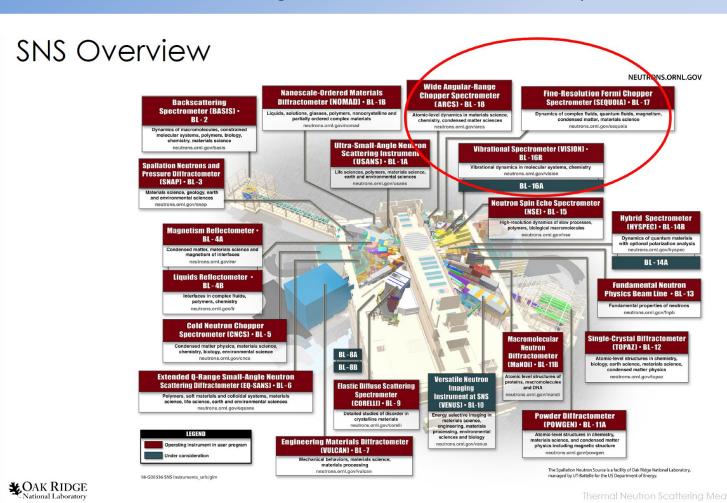

- Cross section measurements
 - (n,n') Elastic and inelastic cross sections

- $(n,n'\gamma)$ γ -ray production cross sections Level cross sections
- Detector development

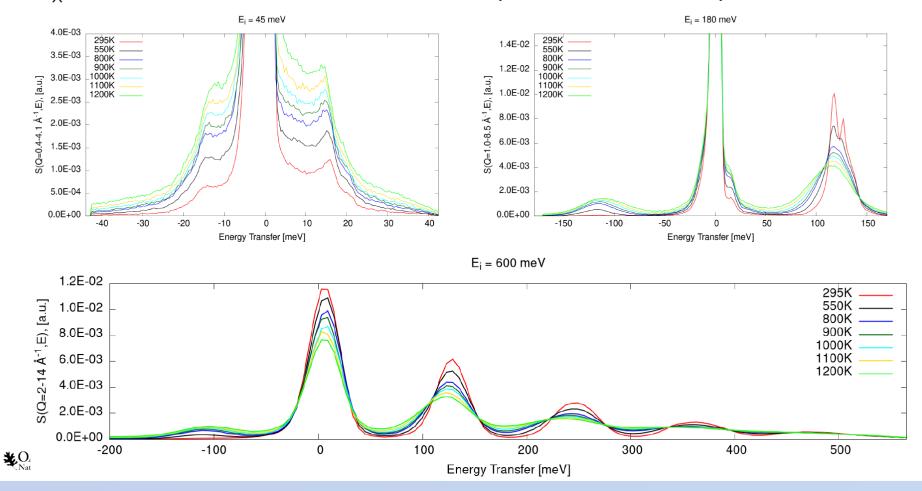
nat_I i

Li(n,n)

- natLi scattering sample was placed inside a polyethylene container. Hence, the additional C and H elastic peaks in the raw spectra (blue).
- Spectra subtracted with contribution by the container (red) display over subtraction due to the H(n,el) bump as shown in the histogram at the right.


Measurement Status

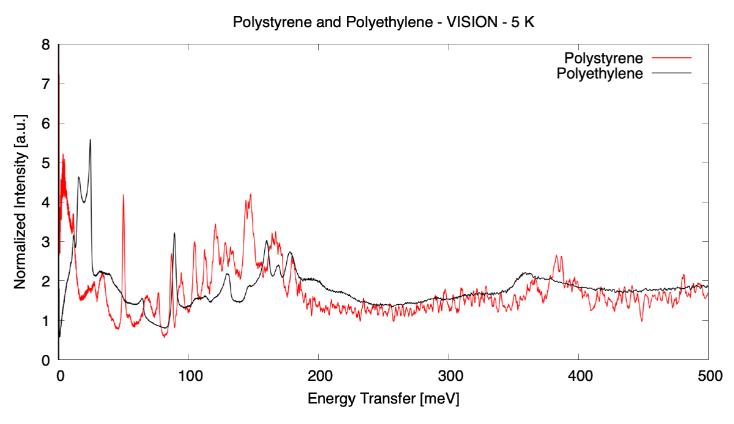
Measurements	Status		
^{nat} Li(n,n) & (n,n'γ)	 Measured γ-ray excitation function 0.8-4.5 MeV with accompanying angular distributions in 0.1 MeV steps on LiF target. Measured 2.0 & 3.0 MeV (n,n') data angular distributions on Li metal target 		
¹⁹ F(n,n) & (n,n'γ)	 Measured γ-ray excitation function 0.8-4.5 MeV with accompanying angular distributions in 0.1 MeV steps on LiF target. Measured a trial LiF(n,n) angular distribution May go to a CaF₂ or TaF target. Traditional target is CF. The 89 ns lifetime of the 197 keV level causes huge problems in our n & γ TOF spectra. Current DAQ software not equipped to take time-tagged event mode data. → Ben Crider 		
²⁴ Mg(n,n'γ)	 24Mg is very deformed like 23Na Measured γ-ray excitation function 0.9-4.5 MeV with accompanying angular distributions . a4 coefficients remain complicated 		
^{nat} Si(n,n) & (n,n'γ)	 Isotopically enriched samples not available. Don't appear to be learning anything from the data we took. 		


WPEC 2021 26

Oak Ridge National Laboratory

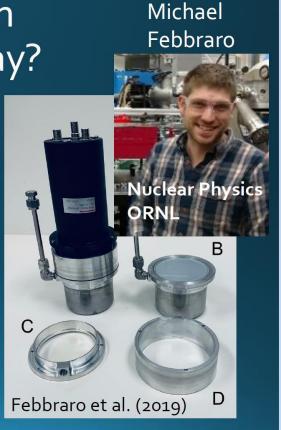
Thermal Neutron Scattering Measurements at the ORNL Spallation Neutron Source

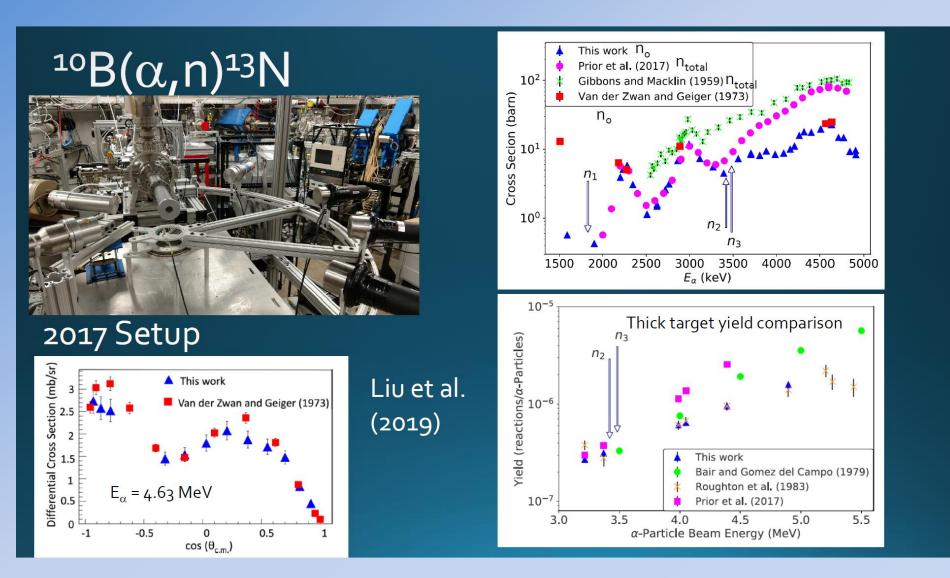
YH_x: ARCS Measurements—Temperature Comparison


YH_x: VISION Measurements

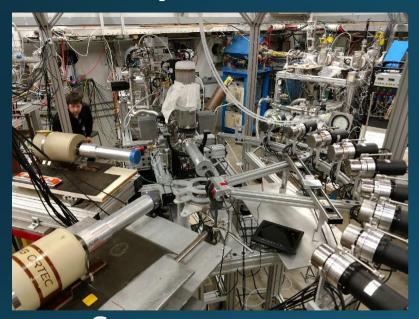
Thermal Neutron Scattering Measurements at ORNL SNS

Polystyrene: Comparison with Polyethylene

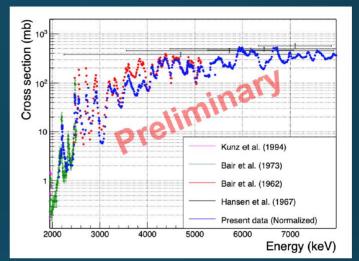

Thermal Neutron Scattering Measurements at ORNL SNS

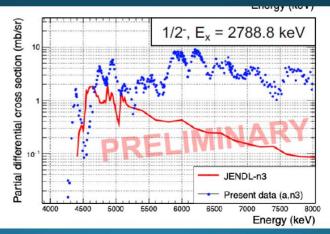

University of Notre Dam

 Partial and differential (α,n) cross section measurements on boron, carbon, and oxygen isotopes


How can we get this data in an efficient and cost effective way?

- The ORNL Deuterated Spectroscopic Array --ODeSA
 - High efficiency, cost effective detector
- High beam current, good energy resolution accelerator
 - Santa Ana Accelerator --- University of Notre Dame
- Up front hurdles: calibration (response matrix) and unfolding algorithms
- 1 to 2 weeks of beam time, full differential and partial cross sections can be measured
- Data analysis is main time component (1-2 years of dedicated graduate student work)





$^{18}O(\alpha,n)^{21}Ne$

2019 Setup 600 energy points at 10 or more angles from 2 to 8 MeV

Becca Toomey (Rutgers)

GEANIE data

For more - check the CSEWG web site

https://indico.bnl.gov/event/7233/timetable/#20201130.detailed

- Full presentations
- Additional talks:
 - Standards update
 - EXFOR status
 - Decay Data Measurements for Applications
- Evaluation and validation sessions