Japanese Activities in Nuclear Data Measurement

Atsushi Kimura Japan Atomic Energy Agency

Nuclear Data Measurement in Japan

Activities by J-PARC • MLF • ANNRI collaboration in 2019

Japan Atomic Energy Agency Tokyo Institute of Technology Kyoto Univ.

Tokyo Tech

Contact : **Nuclear Data Center** Nuclear and LWR Engineering Division Nuclear Science and Engineering Center Japan Atomic Energy Agency

OECD/NEA WPEC 2020

Facility

J-PARC : Japan Accelerator Research Complex

OECD/NEA WPEC 2020

ANNRI

ANNRI (Accurate Neutron Nucleus Measurement Instrument)

Total and Capture cross section of ²⁴³Am

Neutron capture cross section of ²³⁷Np

The capture cross-section of ²³⁷Np has been measured in the energy range from 10 to 500 eV.

	σ _{25.3meV} (b)		
This Work	177.6 ± 3.8		
Esch (2008)	177 ± 5		
Hirose (2013)	176.6 ± 5.3		
JENDL 4.0	178.1		

Averaged radiation width: $40.3 \pm 0.5 \text{meV}$ s-wave mean level spacing: $0.60 \pm 0.2 \text{eV}$ Neutron strength function (10^4S_0) : 1.02 ± 0.12

The present values are in agreement with the previous literature.

Gerard Rovira, J. Nucl. Sci. Technol., 2019, <u>https://doi.org</u>

https://doi.org/10.1080/00223131.2019.1651231

Activities at the other beam lines.

Noboru (BL10)

Neutron Total cross section of powder diamond for cold neutrons

M. Teshigawara, Y. Tsuchikawa, G. Ichikawa et al. NIM, A 929 (2019) 113–120

Activities at JAEA Tandem Accelerator Facility

Contact : Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency

20 MV

Equipment at the JAEA Tandem Accelerator Facility

(1) Stable, high resolution, and sharp pencil beam
(2) Many radioactive target materials can be used
[Available] ²³²Th, ^{233,235,238}U, ²³⁷Np, ^{239,240,244}Pu, ^{241,243}Am, ²⁴⁸Cm, ²⁴⁹Bk, ^{249,250,251}Cf, ²⁵⁴Es
[Planned] ²²⁶Ra, ²³²U, ²⁵²Cf

Booster (super-conducting linac)

(3) Unique setups

Isotope Separator On-Line

Spontaneous fission, α-γ decay study

Recoil Mass Separator

Search for N=Z nuclei beyond ¹⁰⁰Sn

Magnetic spectrograph

Astrophysical ⁷Li problem

Prompt Fission Setup

In-beam fission measurement

Surrogate Reactions for Fission Data

Method

- Populate excited compound nuclides using multi-nucleon transfer reactions. Identification of fissioning nucleus and its excitation energy is given by silicon ΔE -E detectors.
- Detect both fission fragments (double-velocity measurement) using multi-wire proportional counters and micro-channel plate (MCP) based timing detectors.
- · Coincidence with prompt neutrons (liquid scintillation detectors with n/g discrimination technique).

Obtained Data

- Fission cross sections
- Fission fragment mass and angular distribution
- Prompt neutron multiplicity and energy spectra

Selected Results

Fission Fragment Mass Distributions (FFMDs) obtained in ¹⁸O + ²³⁷Np

M.J. Vermeulen et al., submitted to Phys. Rev. C.

Selected Results

Selected Results

Prompt neutron multiplicity at low energy fissions, Eex ~ Bn

Neutron Capture Cross Section Measurements at KURNS

(Institute for Integrated Radiation and Nuclear Science, Kyoto University)

Team:

Japan Atomic Energy Agency Kyoto Univ.

Contact:

Shoji Nakamura, JAEA

Activation Measurement of Cs-135

Utilizing Cs-135 contained in a Cs-137 standard sol. Derive of the capture cross section of Cs-135

by measuring decay γ -rays emitted from 2 nuclides

Experimental Results

S.Nakamura *et al.* Journal of Nuclear Scienece and Technology, 2020, Vol.57, No.4, 388-400.

- The present result of thermal-neutron capture cross section σ_0 was in agreement with the past reported data by Katoh(1997).
- The resonance integral I_0 was 25% smaller than the evaluated value adopted in JENDL-4.0.

	Present Work	JENDL-4.0 (2010)	Katoh (1997)	Baerg (1958)	Sugarman (1949)
σ_0 (b)	8.57±0.25	8.302	8.3±0.3	8.7±0.5	14.5±4*
<i>I</i> ₀ (b)	45.3 ± 3.2	53.52	37.9±2.7	61.7±2.3	
Cut-off Energy (eV)	0.133	0.5	0.55	0.5	

*****Effective Cross-Section

Neutron Production DDX from Heavy-Ion Interactions @ NIRS-HIMAC

Team:

- a) Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University
- b) Hiroshima University
- c) National Institute of Radiological Sciences of National Institute for Quantum and Radiological Science and Technology
- d) Sungkyunkwan University

Contact:

Nobuhiro SHIGYO, Kyushu University

Neutron DDX from Heavy-Ion Interactions @ QST-NIRS-HIMAC

- Kyushu U., Hiroshima U.,
 QST-NIRS, Sungkyunkwan U,
 Myongji U
- Systematic neutron cross sections for shielding design

HIMAC PH2 beam line
Beam: 290 MeV/u ¹³²Xe ~10⁵ pps
Target: Nb, Bi
Detection: NE213, EJ301 + TOF
Directions: 15° - 90°

Experimental setup at HIMAC

Charged particle emission reactions induced by 100-MeV/u ¹²C ions@ HIMAC

Contact: Y.Uozumi, Kyushu University

OECD/NEA WPEC 2020

Telescope for p, d, t, ³He, and α .

Setup of vacuum chamber and detectors at PH2 course of HIMAC experimental hall.

Telescope for particles heavier than α particle.

Isotope production in proton-, deuteron-, and carbon-induced reactions on ⁹³Nb at 113 MeV/nucleon in Riken RI beam

Contact person: Yukinobu Watanabe, Kyushu University

In collaboration with the members from RIKEN, Tokyo Institute of Tech., U. of Tokyo, U. of Miyazaki, Hokkaido U., and Rikkyo U., under ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan)

> Ref.) K. Nakano, Y. Watanabe, S. Kawase et al, Phys. Rev. C **100**, 044605 (2019). K. Nakano, Doctoral dissertation, Kyushu University (2020).

Measurement of isotope production cross section for spallation reactions using the inverse kinematic method:

- Facility: RIKEN RI Beam Factory (RIBF)
- Primary beam: ⁹³Nb
- Secondary targets: CH₂, CD₂, C
- Experimental apparatus: BigRIPS, ZeroDegree Spectrometer
- Particle identification: TOF-B ρ - Δ E method

Particle identification plot for the reaction products from the $\rm CH_2$ target

Experimental Result (I)

MeV/nucleon

Experimental Result (II)

Comparison between data measured by the inverse kinematics method and by the activation method (Titarenko et al.) for the production cross sections of the $p + {}^{93}Nb$ reaction. The black lines connect the activation data denoted by black squares with cubic spline functions.

Activities at National Institutes for Quantum and Radiological Science and Technology (QST)

LCS Gamma-Ray Research Group Contact: Toshiyuki Shizuma shizuma.toshiyuki@qst.go.jp

Measurements of nuclear resonance fluorescence (NRF) using polarized and unpolarized photon beams

Facilities:

NewSUBARU (Univ. of Hyogo), HI γ S (Duke University), γ ELBE (HZDR)

NRF takes place via only electro-magnetic interaction:

✓ Model independent extraction of transition strength
 ✓ Selective excitation of dipole states
 ✓ Unambiguous spin and parity determination (1⁻ or 1⁺) using a polarized photon beam

Experimental Setup at NewSUBARU

Example Electrons Energy: 600-1500MeV Current: Max.250mA Nd:YVO₄ l=1064nm Power: 20W

LCS γ -ray beam Max. energy: 6-39MeV Ave. flux: $\sim 6 \times 10^5$ /s

Typical NRF spectrum for ⁵²Cr

Measured M1 strength compared with RPA calculations

T.Shizuma et al., PRC 96, 044316 (2017).

Status of photo neutron spectrum measurement for mono-energetic polarized photon

T.Sanami^{1,2}, Tran Kim Tuyet², H.Yamazaki^{1,2}, T.Itoga³, Y.Kirihara⁴, Y.Namito^{1,2}, H.Nakashima⁴, S.Miyamoto⁵, Y.Asano⁵ ¹KEK, ²SOKENDAI, ³JASRI, ⁴JAEA, ⁵University of Hyogo KEK JASRI

• Y.Kirihara et al, https://doi.org/10.1080/00223131.2019.1691073 (2019)

Results

- Two components, evaporation and non-evaporation, were observed
- Strong anisotropy was observed for non-evaporation component
- The anisotropy was described as a function of angle between polarization and neutron emission

Activities at Teikyo University

Ayano Makinaga

Collaboration with Ronald Schwengner at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Photon scattering cross section data at HZDR

Partly supported by Hokkaido University

Experimental set up at HZDR

The bremsstrahlung facility at the electron accelerator gELBE

Maximum electron energy ~18MeVMaximum average current ~0.8mAMicro-pulse rate~13MHzMicro-pulse length~5ps

R.Schwengner et.al., NIM A 555, 211(2005)

Result: γ SF (γ -ray strength function) for ¹¹⁵In

Thank you