

WPEC Subgroup 48

Advances in Thermal Scattering Law Analysis

Ayman Hawari, Gilles Noguere

32nd Meeting of the NEA Working Party on International Nuclear Data Evaluation Co-operation May 11 – 15, 2019 • WebEx Meeting

WPEC Subgroup 48 Agenda

Duration	PDT (CA, USA)	CEST (Paris)	JST (Tokyo)	Торіс		
00:20	04:30	13:30	20:30	Welcome	A. Hawari, G. Noguère	
				Status of the TSL activities in		
00:20	04:50	13:50	20:50	the framework of the Nausicaa collaboration	G. Noguère	
00:20	05:10	14:10	21:10	TSL measurement capabilities at ISIS	S. Lilley	
				Effect of thermal resonant		
00:20	05:30	14:30	21:30	treatment on keV scattering	R. Dagan	
				cross sections		
00:20	05:50	14:50	21:50	Short break		
				The impact of uncertainty in		
00:20	06:10	15:10	22:10	thermal scattering on nuclear L. Snoj		
				reactor parameters		
00:20	06:30	15:30	22:30	TSL Research at NSCU	A. Hawari	
				Validation of Thermal		
00:20	06:50	15:50	22:50	Scattering Laws for Light Water	J. Holmes	
00.20	00.50	15.50	22.50	at Elevated Temperatures with	J. 1101111C3	
				Diffusion Experiments		
00:30	07:10	16:10	23:10	Discussion		
	07:40	16:40	23:40	Close		

WPEC Subgroup 42

Nuclear Science 2020

Table of contents

List of abbreviations and acronyms7						
Executive summary	9					
Chapter 1. Introduction	11					
Chapter 2. Theory: Evaluation methods and tools	13					
2.1. Thermal scattering law definition	14					
2.2. Methodology of TSL generation using NJOY/LEAPR						
2.3. Use of atomistic simulations to support TSL analysis	17					
2.4. Future developments in TSL evaluation and processing	21					
Chapter 3. Experimental validation	27					
3.1. Experimental programme at North Carolina State University	27					
3.2. Experimental programmes at Spallation Neutron Source (ORNL, United States)	32					
3.3. Experimental programmes at the Institut Laue-Langevin (Grenoble, France)	33					
3.4. Experimental Programme for Centro Atómico Bariloche and collaborators	34					
3.5. Integral experiments	37					
3.6. Facilities for TSL experiments and capability gaps	39					
Chapter 4. Thermal scattering law data format and uncertainty issues	41					
4.1. Modern TSL library format	41					
4.2. TSL uncertainties						
Chapter 5. Summary and recommendations	49					
References	51					

Thermal Scattering Law S(α,β): Measurement, Evaluation and Application

International Evaluation Co-operation Volume 42

SG42 TSL Evaluations

\Rightarrow Largest historical contribution of TSL evaluations

 \Rightarrow More than 50% are first-of-a-kind evaluations

Material	Evaluation basis	Institution	Library
Beryllium metal	DFT/LD	NCSU	ENDF/B-VIII.0
Beryllium oxide (beryllium)	DFT/LD	NCSU	ENDF/B-VIII.0
Beryllium oxide (oxygen)	DFT/LD	NCSU	ENDF/B-VIII.0
Polymethyl methacrylate (Lucite)	MD	NCSU	ENDF/B-VIII.0
Polyethylene (hydrogen)	MD	NCSU	ENDF/B-VIII.0
Crystalline graphite	MD	NCSU	ENDF/B-VIII.0
Reactor graphite (10% porosity)	MD	NCSU	ENDF/B-VIII.0
Reactor graphite (30% porosity)	MD	NCSU	ENDF/B-VIII.0
Silicon carbide (silicon)	DFT/LD	NCSU	ENDF/B-VIII.0
Silicon carbide (carbon)	DFT/LD	NCSU	ENDF/B-VIII.0
Silicon dioxide (alpha phase)	DFT/LD	NCSU	ENDF/B-VIII.0
Silicon dioxide (beta phase)	DFT/LD	NCSU	ENDF/B-VIII.0
Uranium dioxide (oxygen)	DFT/LD	NCSU	ENDF/B-VIII.0
Uranium dioxide (uranium)	DFT/LD	NCSU	ENDF/B-VIII.0
Uranium nitride (nitrogen)	DFT/LD	NCSU	ENDF/B-VIII.0
Uranium nitride (uranium)	DFT/LD	NCSU	ENDF/B-VIII.0
Light water ice In (hydrogen)	DFT/LD	BAPL	ENDF/B-VIII.0
Light water ice In (oxygen)	DFT/LD	BAPL	ENDF/B-VIII.0
Yttrium hydride (hydrogen)	DFT/LD	BAPL	ENDF/B-VIII.0
Yttrium hydride (yttrium)	DFT/LD	BAPL	ENDF/B-VIII.0
Light water (hydrogen)	Exp. data/MD	CAB, CNL	ENDF/B-VIII.0
Heavy water (deuterium)	Exp. data/MD	CAB, CNL	ENDF/B-VIII.0, JEFF-3.3
Heavy water (oxygen)	Exp. data/MD	CAB, CNL	ENDF/B-VIII.0, JEFF-3.3
Sapphire (aluminium)	Exp. data/Debye model	CAB	JEFF-3.3
Sapphire (oxygen)	Exp. data/Debye model	CAB	JEFF-3.3
Ortho-deuterium	Exp. data	CAB	JEFF-3.3
Para-deuterium	Exp. data	CAB	JEFF-3.3
Light water ice In (hydrogen)	Exp. data	CAB	JEFF-3.3
Mesitylene Ph. II (hydrogen)	Exp. data	CAB	JEFF-3.3
Ortho-hydrogen	Exp. data	CAB	JEFF-3.3
Para-hydrogen	Exp. data	CAB	JEFF-3.3
Toluene Ph. II (hydrogen)	Exp. data	CAB	JEFF-3.3
Silicon	Exp. data/Debye model	CAB	JEFF-3.3

Table 4.1. New and updated TSL libraries in the ENDF/B-VIII.0 and JEFF-3.3 releases contributed by NCSU, CAB, CNL and BAPL

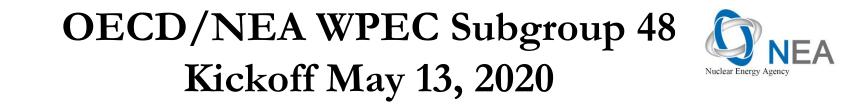
JEFF-3.3 Thermal Scattering Law (TSL) sublibrary

The JEFF-3.3 thermal neutron scattering sublibrary contains 20 evaluations for 16 materials. Notably, the evaluation for heavy water is updated and now has components for deuterium and oxygen bound in heavy water. Nine new materials (sapphire- Al₂O₃, silicon, mesitylene, toluene, ortho- and para- hydrogen, ortho- and para-deuterium, and light water ice) have been included in this release. The remaining evaluations are carried forward from JEFF-3.2.

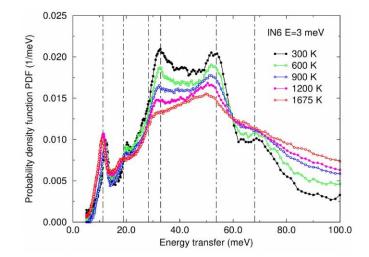
The origin of the new or updated JEFF-3.3 TSL evaluations is summarized below.

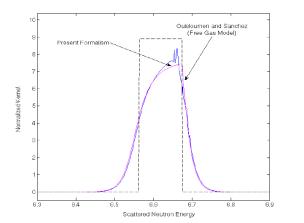
Thermal scattering libraries included in JEFF 3.3.

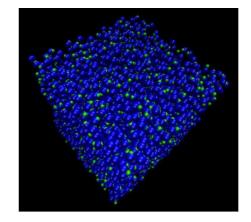
Notes: NCSU – North Carolina State University, CAB – Centro Atómico Banicche; CNL – Canadian Nuclear Laboratories; BAPL – Bettis Atomic Power Laboratory, DFT – density functional theory, LD – Lattice dynamics; MD – Molecular dynamics; ENDF – Evaluated Nuclear Data File; JEFF – Joint Evaluated Fission and Fusion File.

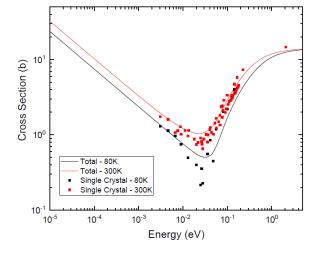

OECD/NEA WPEC Subgroup 48 Kickoff May 13, 2020

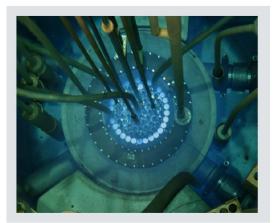
Advances in Thermal Scattering Law Analysis

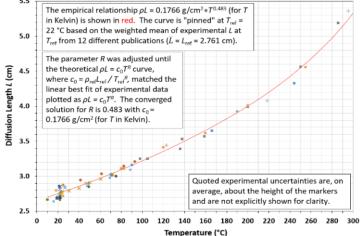

Continued growth in the area of thermal neutron scattering data motivates the formation of a new subgroup within the WPEC nuclear data collaboration

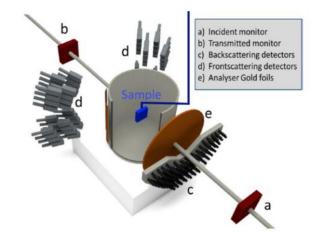

- ⇒ Motivate the TSL evaluation effort in support of various nuclear science and engineering applications
 - \Rightarrow Advanced reactors (e.g., various molten salts)
 - \Rightarrow Criticality safety (e.g., various U and Pu based fuels)
 - \Rightarrow Neutron science (e.g., cryogenic moderators)
- ⇒ Review the development of advanced TSL evaluation methods and tools with consideration of modern simulation approaches
- \Rightarrow Address issues related to data validation, covariance generation, and data formats, ...
- \Rightarrow Act as the focal point with other WPEC subgroups (SG44, SG45, GNDS, etc.)




Advances in Thermal Scattering Law Analysis







OECD/NEA WPEC Subgroup 48 Kickoff May 13, 2020

Advances in Thermal Scattering Law Analysis

Time-Schedule and Deliverables

During the 3-year period, discussion of new and upcoming TSL evaluations, that are being considered for release into the databases (ENDF, JEFF, etc.), will continue. Coordination with other WPEC subgroups will be ongoing.

In addition, the following deliverables will be pursued

- ⇒ 2020-2021: Review and documentation of advances in TSL evaluation methods and tools. Consideration will be given to emerging modern nuclear science and technology analysis modalities.
- \Rightarrow 2021-2022: Review and documentation of TSL data validation, uncertainties, and formats.
- \Rightarrow 2022-2023: Summary and formulation of the SG findings, conclusions and recommendations.

Thank You