Report on U.S. Experimental Activities WPEC 2020

Yaron DANON (CSEWG measurements committee chair) on behalf of CSEWG Rensselaer Polytechnic Institute, Troy, NY 12180, USA

WPEC, 11-15 May 2020, via Webex

Introduction

- This update is based on presentations during the November 2019 CSEWG meeting.
- A link to full presentations:

https://indico.bnl.gov/event/6642/timetable/#20191104.detailed

• **Reports from different laboratories:**

- **1.** LENZ Measurement of the ¹⁶O(n, α) Reaction and a Chi-Nu Status Update. (LANL)
- 2. Measurement of the ³⁵Cl(n,p)³⁵S Reaction Cross Section at LANSCE. (LANL)
- 3. Recent Experimental Activities at LANSCE on Pt Capture Cross Sections. (LANL)
- 4. The SREFT (Spatially REsolving Fission Tracker) Time Projection Chamber. (LANL)
- 5. ORNL neutron cross section measurements for the US Nuclear Criticality Safety Program. (ORNL)
- 6. Experimental Activities at LBNL. (LBNL/UCB)
- 7. Nuclear data measurements carried at TUNL. (Duke University/TUNL)
- 8. Nuclear data measurement and analysis at RPI. (RPI)
- 9. Recent work on neutron standards data. (NIST)
- 10. Current status of EXFOR. (NNDC, BNL)
- 11. Measurements of branching ratios in U-238. (BNL)

This report represents only part of the U.S. nuclear data activity.

Los Alamos National Laboratory

• LENZ Measurement of the ¹⁶O(n,al) Reaction and a Chi-Nu Status Update. (LANL)

- Preliminary ²³⁸U PFNS Data
- LENZ ¹⁶O(n, α_0) cross section: preliminary

Status Update on the Chi-Nu PFNS Experiment: Analysis Improvements, ²³⁹Pu Results, Prelim. ²³⁸U Data

11/4/19 | 3

LENZ ¹⁶O(n, α_0) cross section: preliminary

- Currently 30 % uniform Uncertainty is applied to (n,α₀) cross sections, due to on-going effort of estimating corrections for angular distributions, beam-target overlap functions, absolute neutron flux normalization, etc.
- Double differential data can be used for direct R-matrix fit

Los Alamos National Laboratory

• Measurement of the ³⁵Cl(n,p)³⁵S Reaction Cross Section at LANSCE. (LANL)

- Evidence of non-statistical properties at ~2.6 MeV ??
- 350 and 450 ug/cm² NaCl (³⁵Cl enriched) targets evaporated on to 6um thick brass backing foils
- Two flight paths: 15R (15.2m, forward angles) 15R (14.2m, forward and backward angles) and 90L (8.1m, backward angles)

Evidence of non-statistical properties at ~2.6 MeV

 Recent measurement of ³⁵Cl(n,p) and ³⁵Cl(n,a) at incident neutron energies between 2.42 and 2.74 MeV shows a hint of non-statistical behavior and a reduced cross-section relative to all data libraries.

Batchelder et al. PRC99,044612(2019)

Measurement of ³⁵Cl(n,p)³⁵S_{gs}

Assumption made here of an isotropic angular distribution, using only backward angle data from one detector at the 90L (8m) flight path. $152^{\circ} < \theta$ (lab) $< 169^{\circ}$

Los Alamos National Laboratory

• Recent Experimental Activities at LANSCE on Pt Capture Cross Sections. (LANL)

- Limited amount of data
- Preliminary capture data presented

Current status of $Pt(n,\gamma)$ data

- Pt+neutron data in ENDF is based on TENDL
- · Experimental data is limited
- Example: ¹⁹⁶Pt

Samples

Samples and run times

	Composition (%)									
	190	192	194	195	196	198				
¹⁹² Pt	0.01	56.93	26.34	11.12	4.77	0.83				
¹⁹⁴ Pt	0.01	0.03	96.45	2.46	0.87	0.18				
¹⁹⁵ Pt	0.01	0.01	1.93	96.63	1.33	0.09				
¹⁹⁶ Pt	<0.01	0.01	1.45	3.55	94.57	0.42				
¹⁹⁸ Pt	<0.01	0.03	1.77	2.83	3.73	91.63				
nat	0.01	0.78	32.86	33.78	25.21	7.38				

All fabricated samples were purchased from NIDC, each had 4mm diameter and was mounted on Kapton tape

Sample	M/Y	Time (d)
194 50mg	10/18	4
194 10mg	10/18	1
195 50mg	10/18	4
195 10mg	10/18	1
196 50mg	10/18	1
196 10mg	10/18	1
195 50mg	9/19	1
192 20mg	9/19	3
196 50mg	9/19	4
196 10mg	919	1
198 57mg	9/19	4
198 10mg	9/19	1

Example data: ¹⁹⁶Pt (3.5% ¹⁹⁵Pt, 0.5% ¹⁹⁸Pt contamination)

5

Los Alamos National Laboratory

• The SREFT (Spatially REsolving Fission Tracker) Time Projection Chamber. (LANL)

Motivation

- New fission tracking detector at LANSCE.
- To measure …
 - Neutron beam imaging and flux monitoring.
 - Fission Fragments Total Kinetic Energy measurements (TKE) for hot samples and Fission Product Yields (FPY).
 - Minor actinide fission Cross Section ratios.
 - Fission Fragment Angular Distributions (FFAD) and anisotropies.
 - (n,α) and (n,xα) reactions.
- Low cost and relatively easy construction.
- Small size for supporting measurements inside another detector.

UNCLASSIFIED

Fission tracking detectors at LANSCE

TPC*

(Time Projection Chamber)

- Very precise fission cross section ratios (unc. < 1%).
- ~3000 pads per anode = high number of channels needed.
- High power supply and cooling requirements.
- Custom DAQ system.

* NIFFTE Collaboration

SREFT

(Spatially Resolving Fission Tracker)

- Minor actinide fission cross section ratios (unc. > 1%).
- 187 pads per anode => less channels needed.
- Limited cooling required and low power supply.
- Commercial DAQ system.

Digitizers out of the beam

UNCLASSIFIED

Oak Ridge National Laboratory

- Transmission & Capture Measuring ¹⁴²Ce Resonance region
 - Measurements at GELINA

142 Cerium sample preparation

- Used cerium oxide, the inventory form from ORNL isotopes
- Oxides are hygroscopic, therefor the sample is sealed in an Al-can
- Oxide is heated to remove all moisture and pressed to a selfsupporting disk

¹⁴²Ce Transmission detailed view misassigned resonances

- Used ENDF/B-VIII Ce resonance parameters
- Oxide sample requires to include oxygen resonance parameter in the resonance file to describe correctly the transmission.
- Not possible with ENDF/B-VIII, because it has only a pointwise cross section for oxygen.
- So used ORNL oxygen evaluation resonance parameter file from R. Sayer.

¹⁴²Ce capture 60m TOF spectrum

Cross Section measurements at LBNL and UC-Berkeley

88-Inch cyclotron

- The DOE Isotope Program has recognized this and initiated a Tri-lab effort (BNL, LANL, LBNL) to measure important (p,x) cross sections from threshold to 200 MeV
- As(p,x)⁷²Se,⁶⁸Ge in the energy range 40 -200 MeV
- GENESIS array to measure the ²³⁸U(n,n'γ), but it will also provide new insight into P(v(A,Z)) for
 - (n,f)
 - Neutrons from 16 MeV deuteron breakup
 - 10-20 EJ-309 scint. + Clovers and LEPS
 - Initial focus is ⁵⁶Fe(n,n' γ)

We can rapidly measure (p,D,α,x) cross sections using the stacked target technique*

*S.A. Graves *et al.*, NIM B386 (2016) 44–53 4 https://doi.org/10.1016/j.nimb.2016.09.018

Our first joint effort with LANL-IPF and BNL-BLIP has centered on ⁷⁵As(p,x) with an emphasis on ⁶⁸Ge and ⁷²Se production (Morgan Fox)

Lee Bernstein

Example #4: We built the GENESIS array to measure the 238 U(n,n' γ), but it will also provide new insight into *P*(*v*(*A*,*Z*)) for (n,f)

- Neutrons from 16 MeV deuteron breakup
- 10-20 EJ-309 scint. + Clovers and LEPS
- Initial focus is 56 Fe(n,n' γ) (D.L. Bleuel)
- Ph.D. student Joey Gordon
- ²³⁸U(n,f γ) data will provide insight into the A,Z,E,J^{π} dependence of *P*(ν)

This is part of an interagency nuclear data effort initiated by DNN & DOE-NP

Lee Bernstein

Nuclear Data Week 2019

^{*}W. Younes *et al.*, PRC 64, 054613 (2001) ¹

Nuclear data measurements at TUNL (Duke University/TUNL)

- Fission product yield (photon induced)
 - Move to short half-lives
 - Demonstrate a rabbit system
- Medical Isotope production using (γ,x)

y-FPY @ 13 MeV results

UNIVERSI

Product		FPY (%)		
	²³⁵ U	²³⁸ U	²³⁹ Pu	
⁸⁴ Br	1.77(13)	2.49(19)		
85 Kr ^m	2.63(10)	1.27(4)		
⁸⁷ Kr	3.45(28)	2.29(16)	1.45(12)	
⁸⁸ Kr	3.87(22)	2.92(17)	2.08(15)	
⁹¹ Sr	6.08(26)	5.27(18)	3.91(24)	
⁹² Sr	6.52(21)	4.82(15)	4.19(66)	
⁹² Y		8.48(96)		
⁹³ Y	6.14(93)	9.53(145)		
⁹⁴ Y	6.84(37)	7.50(46)	4.71(33)	
⁹⁵ Zr	6.91(21)	6.67(22)	7.26(39)	
⁹⁷ Zr	5.97(21)	6.20(19)	6.78(38)	
⁹⁹ Mo	5.32(20)	6.57(22)	7.42(41)	
¹⁰⁴ Tc	2.37(14)	4.44(64)	1.96(14)	
103Ru	2.85(13)	5.34(72)	7.24(39)	
105 Ru	1.90(11)	4.06(20)	6.16(39)	
¹⁰⁵ Rh	1.40(17)	3.42(11)		
$^{115}Cd^{g}$	0.34(2)			
¹²⁸ Sn	1.22(16)	1.22(22)	1.18(16)	
¹²⁷ Sb	1.31(5)	0.98(4)	2.35(18)	
¹²⁹ Sb	2.47(12)	2.59(9)	2.82(15)	
¹³⁰ Sb	0.82(6)	1.61(11)	1.36(11)	
¹³¹ Sb	1.59(13)	5.01(33)		
¹³² Te	4.98(26)	5.44(25)	3.47(21)	
¹³³ Te	4.10(42)	5.27(53)	4 03(43)	
¹³⁴ Te	5.37(39)	7.43(51)	1100(10)	
¹³¹ I	4.78(33)	4.51(14)		
¹³³ I	6.42(33)	7.10(28)	7.02(48)	
¹³⁵ I	4.72(21)	6.13(29)	102(10)	
¹³⁵ Xe	6 38(20)	7 45(24)		
^{132}Cs	0.50(20)	4.97(16)		
$^{136}Cs^{a}$	0.17(1)	1.57(10)	0.10(1)	
$^{138}Cs^{g}$	7.74(33)		6 45(37)	
¹³⁹ Ba	7.50(39)	8.02(31)	0110(07)	
¹⁴⁰ Ba	5 52(21)	5 66(18)	5 93(31)	
¹⁴¹ Ba	443(27)	5.00(10)	422(31)	
¹⁴² La	5.98(19)	5 58(18)	5.87(31)	
¹⁴¹ Ce	5.56(15)	5 36(17)	5.67(51)	
¹⁴³ Ce	4 78(30)	4 92(15)	3 88(20)	
¹⁴⁶ Pr	4 86(39)	7.72(13)	5.00(20)	
¹⁴⁷ Nd	1.71(7)	2.71(11)	2.03(11)	
¹⁴⁹ Nd	1.71(7) 1.64(11)	2.71(11) 2.82(10)	2.03(11) 2.32(18)	
¹⁵¹ Pm	0.41(3)	0.78(3)	2.52(10)	
	0.71(5)	0.70(5)		

at CHAPEL HILL

Independent fission product yields Y_i(A,Z) – Proposed at LBNL

Goal: Predicting independent and cumulative FPYs data simultaneously and consistently in the energy-dependent manner

1

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

RABITTS

Goal: measure fission product yields for ²³⁵U, ²³⁸U, and ²³⁹Pu

- Fission product $T_{1/2}$ from <1 s to 100 s
- Investigate dependence on neutron energy
- Construction began December 2018

RApid

Belt-driven

Irradiated

Target

Transfer

System

Fully automated system

- Moves between irradiation and counting positions
- 1 m track with 0.4 s transfer time
- 10 m track with 1 s transfer time
- User set irradiation, transfer, and counting time

Servomotor controls sample position

- Repeatability to $\pm 33 \, \mu m$
- Soft acceleration and deceleration

Data acquisition system

Digital DAQ time stamps events to < µs precision

NC STATE

UNIVERSITY

TUN

Very Short lived fission products

Data on ²³⁵U, ²³⁸U, and ²³⁹Pu

- 3 s irradiation time, 9 s counting time
- 6 hours beam on target

⁹⁶Sr

Applications:

- Advance fundamental understanding of the fission process
- Benchmark microscopic fission models
- Stockpile science
- Nuclear energy
- Nuclear forensics
- Antineutrino anomaly

Medical Isotope Production

Cross section measurement: $^{197}Au(\gamma,n)^{196}Au$

Preliminary data (14-27 MeV)

Nuclear data measurement and analysis at RPI

- ¹⁸¹Ta transmission and capture
- KeV neutron scattering form Zr and Cu
- Neutron induced reactions for ²³⁵U and ²³⁹Pu

Multi-Region URR evaluation

RPI Evaluation: Updated JEFF-3.3

- Updated RRR and URR parameters
- Very sensitive to a_c , D and other $\langle Pars \rangle$
- Using the RPI evaluation we can improve agreement with measured data

Zirconium Scattering Conclusions

- Differences between evaluations between 0.1 1 MeV
- The extended RRR in ENDF/B-VIII and JENDL 4.0 better reproduces the experimental data

Copper Scattering Closer Look

- Closer look shows some discrepancies between experiment and evaluations at the low and high keV energy range
 - Near 250 keV differences between evaluations at some angles
 - Near 3 keV the evaluations seem low at all angles

1000 1250 1500

Time of Flight [ns]

369 500

Time of Flight [ns]

369 500

Recent work on neutron cross section standards at NIST

 Update on all standard isotopes was given (see full talk on CSEWG web site)

The Neutron Cross Section Standards

Reaction	Energy Range
H(n,n)	1 keV to 20 MeV
³ He(n,p)	0.0253 eV to 50 keV
⁶ Li(n,t)	0.0253 eV to 1 MeV
¹ºB(n,α)	0.0253 eV to 1 MeV
¹⁰ B(n, $\alpha_1\gamma$)	0.0253 eV to 1 MeV
C(n,n)	10 eV to 1.8 MeV
Au(n,γ)	0.0253 eV, 0.2 to 2.5 MeV, 30 keV MAC
²³⁵ U(n,f)	0.0253 eV, 7.8-11 eV, 0.15 MeV to 200 M
²³⁸ U(n,f)	2 MeV to 200 MeV

eV

Carlson's Summary

Summary-what is needed

- Improved experimental work is necessary for all the standards
 - Especially the boron and lithium standards so the upper energy bound can be increased
 - > Also for gold capture that has some of the largest uncertainties for the standards
- > Extension of the hydrogen standard to about 150 MeV and possibly higher (work is underway by Hale and Paris)
 - It is now 20 MeV but there are cross section ratio data to much higher energies
 - Note that changes to a standard are not allowed for a given version but extensions are allowed
- Additional work beyond the ²³⁹Pu(n,f) work of Neudecker for inspection of uncertainty sources for standards measurements.
- Further work on unrecognized sources of uncertainty
 - Inspection of data sets for unrecognized sources of uncertainty and correlations in data
- Consider improved evaluation techniques for the standard cross sections

Measurements of branching ratios in U-238. (BNL)

 Improving the double-differential ²³⁸U(n,n'γ) cross section using neutron-gamma coincidences

Motivation

Merger of nuclear structure and nuclear reaction physics

Branching ratios essential to determine cross section Brookhaven froms off-yrast states

Isn't ²³⁸U well studied?

Eγ [†]	Iγ‡	E _i (level)	J_i^{π}	E_f	J_f^{π}	Mult. [§]										
324		1151	6-	827.0	5-		Onl	v h	and	fulo	fint	onci	itia	r ror	oorta	ho
329 ^e		2675.2	16+	2346.4	14+		UIII	yan	anu	iui u		ens	ille:	sieh	JOIL	eu
332 333		2502	(17^{-})	2170 2418	(15^{-})											
338.8 ^{&} 4		1415.2	14+	1076	10											
346		2991	(16 ⁺)	C+D	(14+)											
347.5 ^{&} 4		2306.4		1958.9	15											
350		260	16+	2333	14+											
354#	0.40	1318.0	o 2+	966.4	7 2+	F2										
355	0.47	2744	18-	2389	16-	62										
356		2712	(16 ⁺)	2356	(14+)											
356 ^e	7.1.0	3031.2	18+	2675.2	16+											
357.5" 0 365	1.1 3	1037.24	17+	2502	1 15 ⁺											
368 ^e		2675.2	16+	2306.4	17-											
369		3120	(19-)	2751	(17-)											
372.9 ^{&} 4		1788.2	16+	1415.2	14+											
374.8° 4		1150.4	9- 10-	775.7	10^{+}											
377		3368	(18^+)	2991	(16 ⁺)											
380 ^e		3411.2	20+	3031.2	18+											
382		3065	18+	2683	16+											
382.7 × 4 383		2689.0	(18^+)	2306.4 2712	17^{-} (16 ⁺)											
384		3128	20-	2744	18-											
387 ^e		2346.4	14+	1958.9	15-											
397.0 [#] 10	3.75 19	1128.8	(2^{-})	732.06	3-											
397 399		3264 1778	12-	2867	11-											
400 ^e		2048.7	12+	1649.0	13-											
400 ^e		3811.2	22+	3411.2	20^{+}											
400.6 [#]	0.68	1530.1	2^+	1128.8	(2^{-})											
401 102 6 & 1		2100.0	(21) 18 ⁺	1788.2	(19)											
405		3773	(20^+)	3368	(18^+)											

E. Browne, J.K. Tuli, Nucl. Data Sheets 127, 191 (2015)

Gammasphere at Argonne National Lab

100 HPGe detectors Compton-suppressed High coincidence efficiency

Brookhaven Science Associates

Preliminary Results

- Branching ratios for 22 levels in ²³⁸U
- Cross checks between different beams
- Also will analyze neutron transfer, ²³⁷U, ²³⁶U

В	roc	okr	av	en	Sci	er	ice	Ass	SOC	late	S

-	T 77						
E_{level} (keV)	$J_i^{"}$	E_{γ} (keV)	BR	Elevel	J_i^{π}	E_{γ}	BR
(1001)	-	()		(keV)		(keV)	
*680	1-	634.6	100	*050	o [_]	218.0	42(17) 22(2)
		679.6	85(10)	350	2	218.0	43(17), 32(2) 100 $74(29)$
731	3^{-}	583.0	91(7)			904 7	100, 14(25)
		686.4	100	1028	4-	295.5	100, 100
826	5^{-}	519.0	65(4)	1020	-	879.1	28(4)
		678.0	100	1151	6-	122.9	27(2), 100
*966	7^{-}	447.7	49(5)	1101	0	322.9	100, 100
		658.4	100			022.0	100, 100
1150	9^{-}	183.6	21(2), 5.1(4)			842.9	98(10), 27(2)
		374.5	100, 25(2)	1318	8-	167.0	100
		632.2	100, 100			351.0	57(3)
1378	11^{-}	302.5	24(5), 13(2)	1528	10^{-}	209.5	100
		228.1	100, 5(7)			376.7	9.6(7)
		602.5	100, 100	1778	12^{-}	249.5	100
1649	13^{-}	233.3	16.8(9), 7.7(4)			398.2	12.5(7)
		269.7	100, 46(2)	1786	10^{-}	257.8	100
		572.2	100, 100			636.4	29(7)
1959	15^{-}	309.5	96(5)7	2048	12^{-}	261.5	100, 100
		543.2	100			270.5	17(1), 100
2306	17^{-}	347.0	100			669.7	16(2), 91(11)
		517.8	50(3)	2345	14^{-}	281.0	11(1), 79(10)
2689	19-	382.0	100			297.2	100, 100
-000	10	497.9	32(1)			697.4	100, 14(1)
3104	21-	431.3	100	2673	16^{-}	287.4	21(2)
0104	21	414.4	15(1)			328.2	100
3547	22-	4/3 2	100				
0041	20	479.4	11(1)				

For more - see CSEWG web site

https://indico.bnl.gov/event/6642/timetable/#20191104.detailed

- Measurements related to:
 - Fission product yields
 - Internal Conversion Coefficients Precision Measurements
 - Decay Data Measurements for Applications