ENDF/B Progress Report

32nd WPEC Meeting

11-15 May 2020, NEA Headquarters, Boulogne-Billancourt, France (at least virtually)

D. A. Brown

for the Cross Section Evaluation Working Group

National Nuclear Data Center

Brookhaven National Laboratory

ENDF/B-VIII.0 was released on 2 Feb. 2018 by the Cross Section **Evaluation Working Group** (CSEWG)

ENDF/B	S-VIII.O
was rel	eased
or 2 Feb. 2 the C	CSEWG's focus for 2019 & 2020 CSEWG is measurements and tool building
Sect Evalua Working	Evaluation work is ramping up
USE	Anniversary!*

New planning & funding process

Recent Events in Nuclear Data

The Nuclear Data Working group (NDWG)

 In FY19 we formalized the collaboration with a new charter MISSION STATEMENT

 The goal of the Nuclear Data Working Group (NDWG) is to facilitate communication, collaboration, coordination and prioritization of nuclear data efforts across multiple program offices, the national laboratories, universities, and industry.

MEMBERSHIP

- Members shall be experts in their respective fields and be nominated to serve on the committee by program managers or national laboratories.
 - Up to 2 members can be nominated per program manager
 - Up to 2 members can be nominated per national laboratory

Please contact me <u>romanoce@ornl.gov</u> for information on participation

6

The Nuclear Data Working group (NDWG)

- In FY19 we forn MISSION STATEME
- communicatio data efforts ac universities, and

MEMBERSHIP

- Members shall on the commit
 - Up to 2 member
 - Up to 2 member

 The goal of the NDWG/WANDA process litate is a valuable addition to **CSEWG** planning and brought several new user communities to CSEWG

of nuclear atories,

6

inated to serve ies.

Please contact me <u>romanoce@ornl.gov</u> for information on participation

Welcome to Workshop for Applied Nuclear Data Activities 2020

- Sponsored by the Nuclear Data Interagency Workin Group
- Roadmapping Sessions:
 - Artificial Intelligence/Machine Learning for Nuclear Data
 - Detector Models, Atomic Data and Stopping Powers
 - Covariance/Sensitivity/Uncertainty/Validation and its impact on applications
 - Nuclear Data for Isotope Production and Target Fabrication
 - Neutron Induced Gamma Production and Gamma Deca
 - Scattering Transport and Shielding

New tools

FLASSH Code

- FLASSH Code
 - Relaxed major approximations (incoherent, cubic, ect.)
 - Improved liquid physics
 - Improved output formatting
 - Warning Messages for the User
- FLASSH GUI
 - Error Checks
 - Crystal Structure Window/ Inputs
 - ENDF Header Formatting

	>01	Сгу	stal Structure: U_U	N					?	×
	Mate	eria	Selection: 12 - U	in UN		~				
	Para	ame	eters [a b c [Å] α β γ	[°] (space gr	oup)]:	4.85945 4.85945 4.	35945 90 90 90 (Fm-	3m)		
	Inpu	ıt u	nit cell vectors a, b, a	and c, in the	unit of Å	ι.				
			х	Y		Z				
		a	4.85945	0.00000		0.00000		c		
		b	0.00000	4.85945		0.00000		Δ		,
		c	0.00000	0.00000		4.85945		2	$ \leq $	
	Num	ber	of Non-Equivalent A	toms Sites	2			α β	_y /	
	DOS	Ту	pe		Atom s	site	× x = a	Y	b	
> FLASSH	: U_U	JN			_					
Project C	reate	2	Run Help							
							y for the primary	scatterer		
_	_		_			_ , ,				
		/	Λ	\mathbf{C}						
				Э.	\Box			OK	Cano	el
		٨	nalveie Ser	torin	~ ~					_
Full La	<i>a v v</i>	А	naiysis Sca	litering	y 3y	Stern Hub				
Do not	distr	ibu	ite without explicit (aihawari@	permission ncsu.edu)	n from A	Ayman Hawari				
			LEIP LAP	BORATOR	IES					

Slide from A. Hawari (SG-48 Talk)

New evaluations BROCKHAVEN NATIONAL LABORATORY

natCr evaluations performance driven by similar cluster of resonances in ⁵⁰Cr & ⁵³Cr

- Evaluating multiple scattering corrections in legacy (Steiglitz et al.) and modern (Guber et al.) experiments (A. Cuadro)
- Added Direct+Semi-Direct from CUPIDO
- Working with M. Pigni (ORNL), R. Capote (IAEA), A. Trkov (JSI) to finalize

High energy evaluations under better control

- Good (n,tot) & OMP
- Good reproduction of (n,n'g) data of Mihailescu et al.
- Match IRDFF cross sections
- Working on merging
- Working on correcting capture for missing resonances at RRR-Fast interface

LANL Light Element Evaluations

	H1	H2	H3	He3	He4	Li6	Li7
n	VIII.0	VII.1	VII.1	VII.1	VII.1	VIII.0	VII.1
р	VII.1	VII.1	VII.1	VII.1	2020*	VII.1	2001**
d		VII.1	VII.1, 2018	VII.1	2020	VII.1	2003**
t			VII.1	VII.1	2011*	VII.1	*
³ He				2001	2011*	VII.1	
α					2020*		

- Roman numerals refer to ENDF versions
- 2011: not in ENDF/B-VIII.0
- 2020: recent submissions "ENDF/B-VIII.b1"

* Nuclei for which LLNL evaluations have been put into ENDF/B-VIII.0

**Nuclei for which LLNL evaluations replaced existing LANL evaluations in VIII.0

Slide from M. Paris (CSEWG 2019)

⁷Li compound system evaluation Angular distributions ⁴He(t,el)

New Evaluation on Angular Distributions and Energy Spectra for Neutron-induced Charged particle Measurements

Korea Atomic Energy Research Institute:H.I. KimTheory Division (T-2):T. Kawano, M. Herman

Physics Division (P-27):

H.Y. Lee, L. Zavorka, S. Kuvin, A. Georgiadou

postdocs, guest scientists

Slide from H. Y. Lee (CSEWG 2019)

Newly updated Nuclei

Numbers of discrete levels in the residual nuclei included to calculate (n,p) and (n,a) reaction cross sections. The numbers in parenthesis present the number of discrete levels given in ENDF/B-VIII.0, where '0' stands for no partical cross section given in the evaluation.

Target	р	α	Target	р	α	Target	р	α
^{27}Al	20 (20)	20 (20)	^{50}Cr	10(0)	10(0)	64 Zn	10 (0)	10 (0)
^{28}Si	14(14)	16 (16)	^{51}Cr	10 (0)	10 (0)	65 Zn	10(0)	10 (0)
^{29}Si	16 (16)	20 (20)	^{52}Cr	10 (0)	10 (0)	66 Zn	10 (0)	10 (0)
^{30}Si	6 (6)	12 (12)	^{53}Cr	10(0)	10 (0)	67 Zn	10 (0)	10(0)
^{31}Si	1(1)	15(15)	^{54}Cr	10(0)	10 (0)	68 Zn	8 (0)	10(0)
^{32}Si	1(1)	1(1)	54 Fe	34(34)	24(24)	69 Zn	17(17)	18(18)
^{35}Cl	30 (30)	21(21)	56 Fe	10(10)	19(19)	70 Zn	1(0)	1 (0)
^{36}Cl	16(16)	32 (32)	57 Fe	18(18)	39(39)	^{73}As	10(0)	10(0)
^{37}Cl	10(0)	6 (6)	58 Fe	17(17)	10(10)	^{74}As	10(0)	10(0)
^{39}K	10(0)	10(0)	⁵⁸ Ni	10(0)	10(0)	90 Zr	12(12)	9 (9)
^{40}K	10(0)	10(0)	⁵⁹ Ni	10(0)	10 (0)	91 Zr	6 (6)	40(40)
^{41}K	10(0)	10(0)	⁶⁰ Ni	10(0)	10(0)	92 Zr	1(1)	40(40)
46 Ti	10(0)	10(0)	⁶¹ Ni	10(0)	10(0)	93 Zr	17(17)	27 (27)
47 Ti	10(0)	10(0)	62 Ni	10(0)	10(0)	94 Zr	10(10)	40(40)
48 Ti	10(0)	10 (0)	⁶³ Ni	26(26)	28(28)	95 Zr	16(16)	9 (9)
49 Ti	10(0)	10(0)	⁶⁴ Ni	10(0)	1 (0)	96 Zr	3 (3)	10(10)
50 Ti	9 (0)	10(0)	^{58}Co	40(40)	40 (40)	^{107}Ag	10(0)	10(0)
^{49}V	40 (40)	40 (40)	^{59}Co	10(0)	10(0)	¹⁰⁹ Ag	31(31)	2(2)
^{50}V	10(0)	10(0)	^{63}Cu	10(0)	10(0)	¹⁸⁰ Ta	10(0)	10(0)
^{51}V	10 (0)	10(0)	^{64}Cu	40(40)	40(40)	181 Ta	10 (0)	10(0)
			^{65}Cu	10(0)	10(0)	197 Au	10(0)	10(0)

Slide from H. Y. Lee (CSEWG 2019)

Comparison with experimental data (Brass target: 65 % natCu + 35 % natZn)

Probability

CoH₃ New Evaluation of ²⁰⁸Pb, (n,n'), (n,2n), and (n,3n)

New evaluations NAVAL NUCLEAR LABORATORY

Naval Nuclear Laboratory Special Purpose O-17, O-18, Be-9 (α,n) Evaluations

> Jesse Holmes Andrew Pavlou Jason Thompson Mike Zerkle

Cross Section Evaluation Working Group

Brookhaven National Laboratory

November 5-7, 2018

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Fluor Marine Propulsion (FMP), LLC, a wholly owned subsidiary of Fluor Corporation.

Problems with Kalbach-Mann Systematics

- O-17 and O-18 use Kalbach-Mann systematics for File 6 coupled energy/angle distributions for MT=4 (production of one neutron in the exit channel).
- Energy/angle distributions based on Kalbach-Mann systematics are decoupled from the partial cross sections for reactions leaving the residual in the ground state or particular low-level excited states.
- The Q-values of low-level nth excited-state reactions (including the 0th ground-state) are widely separated and strongly impact the emitted neutron energy spectrum for reactions induced by low-energy α particles.
- Kalbach-Mann theory for (α,n) neutron energy/angle distributions is appropriate for veryhigh-energy incident α particles (tens to hundreds of MeV), where high-level residual excited states (or a continuum excited state) dominate.
 - Not appropriate for low-energy α particles emitted by actinide decay (approx. 4-7 MeV), which will then
 undergo slowing down in materials of interest.

Slide from J. Holmes (CSEWG 2018)

²³⁸PuO₂ (α,n) + s.f. Neutron Emission Spectrum Decay Alpha Source

Slide from J. Holmes (CSEWG 2018)

Summary

- NNL-modified special-purpose (α,n) evaluations for O-17, O-18, and Be-9 are being submitted for inclusion in ENDF/B-VIII.1.
- These evaluations are based on the original JENDL/AN-2005 evaluations with specific modifications by NNL to address physics deficiencies affecting neutron energy spectra. The NNL versions have been validated against experimental measurements.
- Other JENDL/AN-2005 (α,n) evaluations were tested by NNL. These are not being submitted by NNL as no modifications were made.
- For O-17, MF=3 cross sections are unchanged. MF=6 / MT=4 (using Kalbach-Mann) is removed and replaced with MF=6 / MT=50-53 (using isotropic two-body kinematics) and MF=6 / MT=91 (using original MF=6 / MT=4 Kalbach-Mann distribution). MF=6 / MT=22 is unchanged.
- For O-18, MF=3 cross sections are unchanged. MF=6 / MT=4 (using Kalbach-Mann) is removed and replaced with MF=6 / MT=50-54 (using isotropic two-body kinematics) and MF=6 / MT=91 (using original MF=6 / MT=4 Kalbach-Mann distribution). MF=6 / MT=16,22 are unchanged.
- For Be-9, MF=3 / MT=4,22 are modified to give ratios consistent with Geiger (1975). MF=3 / MT=201 is unchanged. MF=3 / MT=50-52,91 ratios are unchanged, but values are rescaled to be consistent with modifications to MF=3 / MT=4. MF=6 distributions are unchanged.

Slide from J. Holmes (CSEWG 2018)

New evaluations

NC STATE UNIVERSITY

Single Crystal Sapphire TSL Data

Slide from A. Hawari (SG-48 Talk)

Uranium Metal

- α-Uranium Metal
 - Stable up to 668°C
- Ab initio lattice dynamics
 - DFT GGA-PBE plus an effective Coulomb term (+U) of 1eV for the 5f electrons plus spin-orbit coupling

- Orthorhombic structure
- 550 eV plane wave cutoff
- 12x12x7 k-mesh

	Experiment (4.2 K)	Calculated	Diff. (%)
a (Å)	2.8444	2.8565	0.42
b (Å)	5.8689	5.8706	0.03
c (Å)	4.9316	4.9834	1.05

Slide from A. Hawari (SG-48 Talk)

Other evaluations

- FLiBe (reported WPEC 30)
- Heavy Paraffinic Oil (reported WPEC 30)
- Hydrofluoric Acid (pending)

New evaluations OAK RIDGE National Laboratory

TSL Covariance - Overview

- Goal was to develop a procedure to generate covariance matrix for $S(\alpha, \beta)$ data that incorporated both computational simulations and experimental data
- Experimental data and computer simulation fit is achieved using the Unified Monte Carlo (UMC) method [1]
- Framework is material & simulation method independent
- Demonstrated using light water

TSL Covariance - UMC

- UMC weights then used to calculate mean values and covariance matrices of:
 - -TIP4P/2005f parameters
 - Thermophysical properties
 - -pDOS
 - Double differential & total scattering cross section
- Mean values and variance of thermal scattering law $\mathit{S}(\alpha,\beta)$ also generated
 - Methods of storing $S(\alpha, \beta)$ covariance matrix not studied here

Solutional Laboratory

Slide from C. Chapman (CSEWG 2019)

TSL Covariance - Correlation Matrices

CAK RIDGE

Slide from C. Chapman (CSEWG 2019)

TSL Covariance - DDXS

CAK RIDGE

Slide from C. Chapman (CSEWG 2019)

α +^{17,18}O Partial Cross Sections

CAK RIDGE

Slide from Marco Pigni (CSEWG 2019)

New evaluations

Polyethylene, Lucite, Ice 1h by K. Remic using results from VISION, ARCS, and SEQUOIA @SNS

ELSEVIER jo	Annals of Nuclear Energy 120 (2018) 778-787 Contents lists available at ScienceDirect Annals of Nuclear Energy ournal homepage: www.elsevier.com/locate/anucene	Annals of Nuclear Energy 133 (2019) 425–430 Contents lists available at ScienceDirect Annals of Nuclear Energy journal homepage: www.elsevier.com/locate/anucene
Thermal scattering law with DFT calculations Kemal Ramić ^{a,*} , Carl Wendor Luke Daemen ^b , Goran Arbana Rensselaer Polytechnic Institute, 110 8th St, Troj Neutron Scattering Division, Oak Ridge National Institut de Radioprotection et de Sûretê Nucléai	y of $(C_2H_4)_n$: Integrating experimental data rff ^a , Yongqiang Cheng ^b , Alexander I. Kolesnikov ^b , Doug L. Abernathy ^b , as ^b , Luiz Leal ^c , Yaron Danon ^a , Li (Emily) Liu ^a y, NY, USA Haboratory, Oak Ridge, TN, USA re (IRSN), Paris, France	Toward a better thermal scattering law of $(C_5O_2H_8)_n$: Inelastic neutron scattering and oClimax + NJOY2016 Kemal Ramić ^{a,*} , Carl Wendorff ^a , Yongqiang Cheng ^b , Alexander I. Kolesnikov ^b , Doug L. Abernathy ^b , Luke Daemen ^b , Goran Arbanas ^b , Luiz Leal ^c , Yaron Danon ^a , Li (Emily) Liu ^a ^a Renselaer Polytechnic Institute, 110 8th St, Troy, NY, USA
ARTICLE INFO	A B S T R A C T	^c Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France
Article history: Received 14 March 2018 Received in revised form 9 May 2018 Accepted 15 June 2018 Available online 30 June 2018 Keywords: Phonon spectrum	Improvements in determination of the thermal scattering law of moderator materials (measuring, calcu- lating and validating) are important for accurate prediction of neutron thermalization in nuclear systems. In this work a methodology for producing thermal scattering libraries from the experimental data for polyethylene (C_2H_4) _n is discussed. Double differential scattering cross section (DDSCS) experiments were performed at the Spallation Neutron Source of Oak Ridge National Laboratory (SNS ORNL). New scattering kernel evaluations, based on phonon spectrum for (C_2H_4) _n , are created using the NJOY2016 code. Two dif- ferent methods were used: direct and indirect geometry neutron scattering at ARCS and SEQUOIA, and VMION instruments connections, when the absence neutrom used doring of form the dumparies in the dumparies of the dumparie	A R T I C L E I N F O A B S T R A C T Article history: Received 13 February 2019 Received 13 February 2019 With the advancements in technology (both experimental and computational) the determine the "true" experimental phonon spectrum became more accessible. In this work a methodology ducing thermal scattering libraries from the experimental data (namely the DFT + oClimax methodology with the Spallation Neutron Source of Oak Ridge National Laboratory (SNS ORNL). New sc
ENDF Neutron scattering Double differential scattering cross section GDOS Polyethylene Criticality safety Density function theory	VISION instruments, respectively, where the phonon spectrum was derived from the dynamical structure factor $S(Q,\omega)$ obtained from the measured DDSCs. In order to compare and validate the newly created library, the experimental setup was simulated using MCNP6.1. Compared with the current ENDF/B- VII.1, the resulting RPI (C_2 H ₄) _n libraries improved both double differential scattering and total scattering cross sections. A set of criticality benchmarks containing (C_2 H ₄) _n from HEU-MET-THERM resulted in an overall improved calculation of K_{eff} , although the libraries should be tested against benchmarks more sensitive to (C_2 H ₄) _n . The DFT + oClimax method is used and is shown to be most comprehensive method for analysis of moderator materials. The importance of DFT + oClimax method lies in the fact that it can be validated against all data measured at VISION, ARCS and SEQUOIA, and experimental total scattering cross section measurements.	Reywords: Phonon spectrum ENDFkernel evaluations, based on the phonon spectrum for $(C_5O_2H_8)_n$, were created using oClim NJOY2016 codes. In order to compare and asses the performance of the newly created library, the imental setup was simulated using MCNP6.1. Compared to the current ENDF/B-VIII.0, the resul $(C_5O_2H_8)_n$ library improved the calculation of both double differential scattering and total scatteri sections. A set of criticality benchmarks containing $(C_5O_2H_8)_n$ from HEU-MET-THERM resulted in a all improved calculation of K_{eff} . The DFT + oClimax method is shown to be the most compare at VISION, ARCS and SEQUOIA neutron spectrometers at SNS ORNL, and experimental total ing cross section measurements. This method also provides a new technique for calculating any spectrum-related quantities such as scattering law kernel, specific heat capacity, thermal cond etc. for any solid state material.

For most moderators, the current ENDF/B-VII.1 libraries were

created using a theoretical phonon spectrum (or density of states). The ENDF/B-VII.1 library for polyethylene was created by Koppel,

Houston and Sprevak in 1969 and was converted to ENDF 6 format

in 1989 at Los Alamos National Lab. In 2016 new polyethylene

library, using molecular dynamics to calculate the phonon spec-

trum, created by North Carolina State University Nuclear Reactor

Program has been added to ENDF as ENDF/B-VIII.b5 library. These

libraries were created to correctly reproduce the energy dependent

1. Introduction

As the accuracy of simulations advances in many areas of nuclear science, code packages such as the Monte Carlo N-

Particle code (MCNP), Goorley et al. (2016), are highly dependent

on the accuracy of current Evaluated Nuclear Data Files (for exam-

ple ENDF/B-VII.1), Chadwick et al. (2996). These evaluated libraries

contain different nuclear reaction data, and most relevant for this

work, these libraries contain thermal neutron scattering cross sec-

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

ARCS spectrometer Specific heat capacity Thermal conductivity

Historically the thermal scattering law (TSL) libraries, as part of Evaluated Nuclear Data Files (for example ENDF/B-VII.1) Chadwick et al. (2011), have been generated either from theoretically comNorth Caroline State University (NSCU) group, have been added to ENDF as ENDF/B-VIII.0 libraries. Furthermore, our Nuclear Data Group at Rensselaer Polytechnic Institute (RPI), has developed a new methodology for creation of TSL libraries Ramić et al. (2018) The newly developed method integrates experimentally.

So much more...

- ²³⁹Pu intermediate structure (M. Pigni, ORNL)
- ²³⁸U(n,n') (M. Vorabbi, BNL)
- ^{234,236}U(n,f) (LANL)
- ⁹Be(g,n) (J. Thompson, NNL)
- Pb isotopes (P. Brain, RPI)
- FPY (LANL, BNL)

- 135 decay datasets revised (R. Lorek, BNL)
- Revised atomic libraries (D.E. Cullen, retired)
- Minor actinide nubars (R.Q. Wright, retired)
- Review/steal IAEA
 Photonuclear Library
- Review/steal JEFF-3.3 TNSL evaluations

New workflow

Unauthorized or improper use of this system may result in administrative disciplinary action and civil and criminal penalties. By continuing to use this system you indicate your awareness

•		🗎 git.nnde.b	oni.gav	Ċ			đ	i 🖻 +
entec	Projects 🗸 Groups 🗸 More 🗸		₽ ~ \$	earch or jump to	Q	00 IN	е 0	v 🛞 v
L	ENDE > library > Details							
۵ ۵	L library U Group ID: 8 Leave gro	oup			۰ ۵	New p	roject	v
n	The ENDF library project itself. A available as an archived project	At the time of creation of this proje named "svn-export".	ect area, ENDF cor	mprises 15 sublibra	ries. The	full ENDI	F/B histon	y is
2	Subgroups and projects Shared	projects Archived projects	Search	by name		Last crea	ited	~
¢	R NDF/B triton subli	Each sublibra	ary has g	jit repo a	nd i	ssue	trac	ker.
	thermal_scatt Second	, Version histor	ry archiv versions	ved from s shown	GFc here	orge,		
	□ 💏 standards 👽 ENDF/B nuclear dat	[∎] ∗ All trackers ir	n proces	s of bein	g pc	orted		
	□ 👫 sfy 👽 ENDF/B spontaneor	us FPY sublibrary		★ 0		2 m	onths ago	
	□ Protons © ENDF/B proton sub	library		★ 0		2 m	onths ago	

••		🛱 git.nndc.bnl.gav		c				Ċ	1	
	Projects 🗸 Groups 🗸 More 🗸		.	Search or jump to	Q	0 1	ነ ሮ	0 ~	<i>⊜</i> ~	
99	ENDF > library > () neutrons > Graph	1								
۵	phase1 \lor									
Ð	You can move around the graph by	using the arrow keys.								
D	Git revision	Q ☐ Begin with the selected commit								
n	Feb 4 [phase1]> 📲 🎆 Mi	ssing covariance from dictionary								
Q.	3 🛃 Fi	xed missing covariance from directory x the file directory, it was missing ent	ries fo	r the new covariance	files					
ଚ	Jan 30 🛛 🙀 Fi	x directory which was missing the new co	varianc	e files						
٥	24 🔂 I 23	Different git branches	S CO	rrespond to	o di	ffer	ent	ste	ps in	
x	21 🧖 N	process:								
 A	Nov 2ñaster phase2>+ 💹 U									
γc	i 🔤 U	 phase1 : ADVANC 	E ch	ecks this bra	anch					
		• phase2 : CSEWG	Valio	lation Comm	hittee	e ch	eck	this	brancl	h
		• master : releases	go h	ere						
			otore	nuch to phe	aol	hra	nch			
			NK_m	erae reques	ts fr	om a	ncn nhag	sel.	→nha	S
						onrj	PIIC		- Piron	

••		🛱 git.nndc.bnl.gav	C	t D +
🚅 😚 ۵	Projects V Groups V More V ENDF > library > @ neutrons > Details	CI ~	Search or jump to Q □ ~ ☆ Star 0	ADVANCE & gitlab talk to each other! (This is the indicator that I killed the job on ADVANCE)
6 D N	-o- 10 Commits ዦ 3 Branches ∅ 0 Ta ENDF/B neutron sublibrary	gs 🗈 301.3 MB Files		
* @	phase1 v neutrons / H Missing covariance from diction David Alan Brown authored 2 day	n ary ys ago	History Q. Find fil	e Web IDE 🛓 🗸
¢	README CHANGELOG	Add LICENSE Add CONTRIBUTING	⊕ Enable Auto DevOps 🕑 A	dd Kubernetes cluster
	Name 	Last commit		1 week ago
	CHANGELOG.md	Update CHANGELOG.txt		2 months ago
	README.md	Update README.txt		2 months ago
	≧ n-000_n_001.endf	initial commit from project export		2 months ago
	P n=001_H_001.endf	initial commit from project export		2 months ago

ADVANCE job dashboard

🗧 🔵 🍵 🚺 🗘 Buildoot	l: builder bui	id-phase1- X 🔄 nautrons: ADVANCE X 📹 Pipeline - ENDP / library / nautro X 🕂	
🗲 -> ୯ ଢ		Image: https://advance2.nndc.bnl.gov/endf/#/builders/30/builds/17	••• ♥☆ II\ ED 📽 😑
Buildbot: ENDF	Ŧ	Buildbot: ENDF Builders / build-phase1-neutrons / 17	Rebuild 😝
NAVISATION			
Home	*	Finished 2 days ago	Next -+
Grid View	ŵ		
Waterfall View	لما	Build steps Build Properties Worker: workerNeutrons Responsible Users Changes Debug	
Console View	0	6 4/4 build-phase1-neutrons/17	4:10:14 cancelled 'make neutrons_all' (cancelled) CANCELLED
> Builds	O ₅ *	worker_preparation	0 s worker ready
About	0	1 ♥ shel	4:10:14 'make neutrons_al' (cancelled)
Settings	5	Ø stdlo	view all 1405 lines 🕹 downced
		♦ cancelled	view all 1 line [A download]

ADVANCE job dashboard

Build reports published to https://www.nndc.bnl.gov/ endf/b7.dev/qa

Next ENDF?

- CSEWG has not made a decision on either a timeline or a version number
- We already have enough content to warrant tagging the first beta release
- COVID-19 and the new ENDF workflow are slowing development