

Nuclear data measurement activities in China

Xíchao Ruan

I. Institutes involve in nuclear data measurement in China

China Institute of Atomic Energy

Highlights:

- Nuclear data integral experiments Be, Ga, W, Pb-Bi, ThO₂ finalized
- 2. Fission fragments measurement system R&D
- 3. CSNS back-streaming neutron beam construction

Nuclear data benchmark experiment

Measure the neutron leakage spectrum from slab samples for different angles with a 14 MeV d-T neutron source

The collimator system

Result of Be

- In general JENDL-4 agree with the measurement best,
- All underestimated at low energy region at 120 degrees.

Result of Ga (collaborate with IMP)

5, Paris, France 🚪

http://arxiv.org/abs/1411.0403

Tungsten (collaborate with IMP)

Fig. 4. (Color online) Comparison of experimental and calculated neutron spectra for thickness of 7 cm

at 60° (left) and at 120° (right)

Fig. 5. (Color online) The C/E values integrated over the five energy regions for thickness of 7cm

at 60° (top) and at 120° (bottom)

http://arxiv.org/abs/1411.5937

Pb and Pb-Bi alloy (collaborate with INEST)

Figure 4: Measured and calculated neutron spectra in LBE experiment

Fission fragments detection system R&D

TOF-E system, at this moment use Si as E detector, plan to develop gas detector later on

The prototype

Time resolution tested with alpha source; Better than 200 ps; Test run with Cf source

Preliminary result

CSNS back-streaming neutron beam line

Highlights:

- 1. The tunnel civil construction finished
- The beam line design (shutter, collimator, neutron dump, etc.) finalized. Some equipements under fabrication.
- 3. Detector system under design and waiting for funding approvement.

Layout of the CSNS back-streaming neutron source

The shutter and the beam window under fabrication

Main features:

Stress analysisMagnetic fluid transmissionVacuum sealing

Peking University

Cross sections of the 56 Fe (n,α) 53 Cr and 54 Fe (n,α) 51 Cr reactions in the MeV region.

ہ Zhimin Wang, Xiao Fan, Luyu Zhang, Huaiyong Bai, Jinxiang Chen, Guohui Zhang^{*} State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China

> Yu. M. Gledenov, M. V. Sedysheva, L. Krupa Joint Institute for Nuclear Research, <u>Dubna</u> 141980, Russia

> > G. Khuukhenkhuu

Nuclear Research Centre, National University of Mongolia, Ulaanbaatar, Mongolia+

Submitted to PRC

ADS related nuclear data measurements at IMP,CAS (2014)

Zhiqiang Chen ADS Nuclear Data Laboratory Institute of Modern Physics, Chinese Academy of Sciences(IMP,CAS)

2015/5/21

measurements.

400 MeV/u 16O + Pb/W Experiments (TOF methods)

250 MeV p + Pb/W/Cu Experiments (water-bath activation)

publications

1. R. Han, R. wada, Z. Chen, et al., Fast neutron scattering on Gallium target at 14.8 MeV, Nucl.Phys. A936, 17(2015).

2. S. Zhang, Z. Chen, Y. Nie, et al., Measurement of leakage neutron spectra for Tungsten with D-Tneutrons and validation of evaluated nuclear data, Fusion Engineering and Design 92 (2015) 41-45.

3. ZHANG Su-ya-la-tu, CHEN Zhi-qiang, LIU Jian-li, et al., Development and the First Test Experiment of Experimental Setup for Measuring of ADS Nuclear Data.

4. Li Yan-Yan, Zhang Xue-Ying, Ju Yong-Qin, Ma Fei, et al., Study of neutron spectra in a water bath from a Pb target irradiated by 250 MeV protons, Chinese Physics C 39, 044001 (2014).

5. L. Chen, F. Ma, X.Y. Zhang et al., Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons, Nucl. Inst. Meth. B 342 (2015) 87-90.

The Study of the Th/U Cycle Nuclear Data in TMSR

Reactor Physics Division, Center for Thorium Molten Salt Reactor System, SINAP,CAS

Th

TMSR 15MeV e-LINAC test running

Some test measurements performed for the source

intensity, detector and electronic system, DAQ, etc.

China Academy of Engineering Physics (CAEP)

U&Th Integral Experiment with D-T Neutrons

Prliminary work

- Design and construct the integral setups of U&Th
- Develop the measurement technique
- Measure ${}^{238}U(n,\gamma)$, ${}^{238}U(n,f)$, ${}^{238}U(n,2n)$, ${}^{235}U(n,f)$ reaction rate
- Measure 232 Th(n, γ), 232 Th(n,f), 232 Th(n,2n) reaction rate

Thank you for your attention ?

