

NRG

Arjan Koning NRG Petten The Netherlands

> May 2015 WPEC meeting NEA Data Bank

Contents

- General philosophy of TENDL
- TENDL-2014:
 - General trends
 - Integral testing

• Bayesian Monte Carlo method for uncertainties

- Global comparison with EXFOR
- Update procedure using weights
- Zooming in on particular nuclides
- Towards TALYS-1.8 and TALYS-2.0
- Conclusions

TENDL nuclear data library

A.J. Koning and D. Rochman ,"Modern nuclear data evaluation with the TALYS code system", Nuclear Data Sheets 113, 2841 (2012).

TALYS Evaluated Nuclear Data Library: TENDL-2014

- Neutron, proton, deuteron, triton, Helium-3, alpha and gamma data libraries.
- 2629 targets (all isotopes with lifetime > 1 sec.)
- Complete reaction description in ENDF-6 format: MF1-MF40, up to 200 MeV
- MCNP-libraries ("ACE-files"), PENDF files and multi-group covariance data

Default: Global calculations by TALYS-1.7 (not generally released) and TARES (resonances)

which are overruled by

Adjusted TALYS calculations (340 input files) and Resonance Atlas-based TARES calculations

which are overruled by

TALYS-normalization to ~200 (experimental) evaluated reaction channels from other libraries (e.g. IRDFF, light nuclides, main channels of "big 3")

For TENDL-2014, all nuclides have been evaluated by a Bayesian Monte Carlo procedure. As usual, this has resulted in complete covariance information as far as the ENDF-6 format allows: MF 31 (nubar) ,32 (resonances), 33 (cross sections), 34 (angular distributions, 35 (fission neutron spectra), 40 (isomeric information), for those who are able to process and use all that.

TENDL-2013 for fast Pu benchmarks

NRG

14 MeV neutrons are generated by a 2 mA deuteron beam impinging on a stationary tritium bearing titanium target; Fusion Neutron Source

FNS Neutron spectra, neutron fluence monitored by ²⁷Al(n,a)Na²⁴

Two experimental campaigns: 1996 and 2000; 74 materials

Z	Element	Form	Z	Element	Form	
9	F	CF2	49	In	Metallic Foil	
11	Na	Na2CO3	50 Sn		SnO2	
12	Mg	MgO	51	Sb	Metallic Powder	
13	Al	Metallic Foil	52	Te	TeO2	
14	Si	Metallic Powder	53	I	IC6H4OH	
15	Р	P3N5	55	Cs	Cs2CO3	
16	S	Powder	56	Ba	BaCO3	
17	Cl	C2H2Cl2	57	La	La2O3	
19	K	K2CO3	58	Ce	CeO2	
20	Ca	CaO	59	Pr	Pr6O11	
21	Sc	Sc2O3	60	Nd	Nd2O3	
22	Ti	Metallic Foil	62	Sm	Sm2O3	
23	V	Metallic Foil	63	Eu	Eu2O3	
24	Cr	Metallic Powder	64	Gd	Gd2O3	
25	Mn	Metallic Powder	65	Tb	Tb4O7	
26	Fe	Metallic Foil	66	Dy	Dy2O3	
27	Co	Metallic Foil	67	Но	Ho2O3	
28	Ni	Metallic Foil	68	Er	Er2O3	
29	Cu	Metallic Foil	69	Tm	Tm2O3	
30	Zn	Metallic Foil	70	Yb	Yb2O3	
31	Ga	Ga2O3	71	Lu	Lu2O3	
32	Ge	GeO2	72	Hf	Metallic Powder	
33	As	As2O3	73	Та	Metallic Foil	
34	Se	Metallic Powder	74	W	Metallic Foil	
35	Br	BrC6H4COOH	75	Re	Metallic Powder	
37	Rb	Rb2CO3	76	Os	Metallic Powder	
38	Sr	SrCO3	77	Ir	Metallic Powder	
39	Y	Y2O3	78	Pt	Metallic Foil	
40	Zr	Metallic Foil	79	Au	Metallic Foil	
41	Nb	Metallic Foil	89	Hg	HgO	
42	Mo	Metallic Foil	81	T1	Tl_2O	
44	Ru	Metallic Powder	82	Pb	Metallic Foil	
45	Rh	Metallic Powder	83	Bi	Metallic Powder	
46	Pd	Metallic Foil	Alloy	SS-304	Metallic Foil	
47	Ag	Metallic Foil	Alloy	SS-316	Metallic Foil	
48	Cd	Metallic Foil	Alloy	NiCr	Metallic Foil	
49	In	Metallic Foil	Allov	Inc600	Metallic Foil	

Chromium

Energy Av a Line Caston Fuere

Decay power: FNS JAERINi

FNS-96 5 Min. Irradiation - Ni

Decay heat should only be analyzed with General Purpose Libraries

M. Fleming, J.C. Sublet, J. Kopecky: Integro-differential validation, CCFE-R(15)27, March 2015

 27 Al (n,a) 24 Na

Integral activation validation for Fusion for Energy

Preliminary work obtained by adjusting TALYS parameters and using the above mentioned references.

			C/E	
reaction	Spectrum	EAF-2010	TENDL-2014	
⁴⁸ Ca(n,2n)	fns_7hour	0.88	1.08	
⁴⁵ Sc(n,2n)	fns_5min	1.07	0.95	
	fns_ScSmGd	1.63	1.45	
90m Zr(n,p)	fns_heat5	1.2	1.2	
	Cf252_flux1	1.37	1.15	
⁹⁴ Zr(n,p)	fns_5min	1.03	1.00	
124m Sn(n,2n)	fns_5min	1.15	1.04	
	fns_Sn	0.88	0.88	
¹⁵⁰ Sm(n,p)	fng_ScSmGd	1.24	0.92	
$^{158}Gd(n,p)$	fng_ScSmGd	1.17	0.90	
158 Gd(n, γ)	fng_ScSmGd	2.00	1.34	
¹⁵⁶ Dy(n,2n)	fng_Dy	1.12	1.08	

Further cleaning of JEFF

- JEFF-3.2: 472 isotopes, 151 are from TENDL-2012
- More "clear" candidates for replacement, Te, Nd, etc.

Bayesian Monte Carlo:

Initial probability distribution for cross sections

- Perform a global, unadjusted TALYS calculation for the entire periodic table of elements
- Compare the results with all EXFOR data

Reaction	All	Reaction	Number	Reaction	Number	Reaction	Number
Composite	5791	Total	4493	Elastic	1118	Non-elastic	425
(n,γ)	5699	(n,γ) (tot)	4932	$(n,\gamma)g$	287	$(n,\gamma)m$	480
(n,f)	1259						
(n,n')	579	(n,n') (tot)	303	(n,n')g	7	(n,n')m	269
$(\mathbf{n},\mathbf{n'}_k)$	1162	(n,n' ₁)	517	(n,n' ₂)	160	(n,n' ₃)	64
(n,2n)	2866	(n,2n) (tot)	1677	(n,2n)g	402	(n,2n)m	787
(n,p)	2561	(n,p) (tot)	1878	(n,p)g	219	(n,p)m	464
(\mathbf{n},α)	1400	(\mathbf{n},α) (tot)	1081	$(\mathbf{n},\alpha)\mathbf{g}$	96	$(\mathbf{n}, \alpha)\mathbf{m}$	223
part prod	515	(n,xn)	20	(n,xp)	94	$(n,x\alpha)$	181
Other	665	(n,3n)	127	$(n,n\alpha)$	83	(n,np)	116
Total	23490	= 2,7 mill	ion data p	oints (<mark>Tha</mark> r	ıks Viktor,	Naohiko and	Emmeric!)

Table 1: Total number of neutron-induced cross section subentries available in XC4 format.

Initial probability distribution for cross sections

• Use F-factor for each experimental data set:

$$F = 10 \sqrt{\frac{1}{N} \sum_{i}^{N} \left(\log \frac{\sigma_{T}^{i}}{\sigma_{E}^{i}} \right)^{2}}$$

WPEC SG-30 on quality assessment of EXFOR

Prior probability distributions for cross sections

Starting point: "Expert" (Gaussian) parameter uncertainties

(A.J. Koning and D. Rochman, ``Modern nuclear data evaluation with the TALYS code system", Nucl. Data Sheets 113, 2841 (2012).) Origin: *Fingerspitzengefühl*

Paramet	er uncertainty	Parame	ter uncertainty		Level de	nsity	
	(%)		(%)	a	11.25-0.03125.A	σ^2	30
	Optica	l model		γ	30	δW	$\pm 1 \text{ MeV}$
r_V^n	2	d_1^n	10	α	30	β	30
a_V^n	2	d_2^n	10	R_{σ}	30	γ	30
v_1^n	2	d_3^n	10	E_0	20	E_M	20
v_2^n	3	r_{SO}^n	10	T	10	δ	$\pm 2 \text{ MeV}$
v_3^n	3	a_{SO}^n	10	K_{rot}	80		
v_4^n	5	v_{so1}^n	5	C_{HFM}	30	δ_{HFM}	30
w_1^n	10	v_{so2}^n	10		Gamma-ray	strength	
w_2^n	10	w_{so1}^n	20	Γ_{γ}	20	$\sigma_{E\ell}$	20
r_D^n	3	w_{so2}^n	20	$\Gamma_{E\ell}$	20	$E_{E\ell}$	10
a_D^n	4			$E_{\rm nor}$	20	$E_{\rm shift}$	$\pm 0.8 \text{ MeV}$
r_V^p	4	d_1^p	20		Fissio	on	
a_V^p	4	d_2^p	20	B_f	10	$\hbar \omega_f$	10
v_1^p	4	$d_3^{ar p}$	20		Pre-equili	brium	
v_2^p	6	r_{SO}^p	20	M^2	30	$R_{\pi\pi}$	30
v_3^p	6	a_{SO}^p	20	$R_{\nu\pi}$	30	$R_{\pi\nu}$	30
v_4^p	10	v_{so1}^p	10	$R_{\nu\nu}$	30	R_{γ}	50
w_1^p	20	v_{so2}^p	20	g_{ν}	11.25-0.03125.A	$E_{\rm surf}$	20
w_2^p	20	w_{so1}^p	40	g_{π}	11.25-0.03125.A	C_{break}	80
r_D^p	6	w_{so2}^p	40	C_{knock}	80	$C_{\rm strip}$	80
a_D^p	8	r_C^p	10				
λ_V	5	λ_{V1}	5				
λ_W	5	λ_{W1}	5				
λ_{Vso}	5	λ_{Wso}	5	المرب محمطة بال	oortointion bu		manla

NR

Multiply these uncertainties by 5 and sample~200 parameters from uniform distribution 16

Practical approach: Start from "best" TALYS input files

- Automatic optimization to EXFOR + integral data requires a lot of pre-selection of data
- Minimal chi-square does often not match expectations (known problem from the OMP)
- For TENDL-2014 we have new "best" files for more than 300 isotopes, which give a visual optimal description of EXFOR + thermal c.s. + RI + MACS + integral activation data (EASY)
- Practical approach: Start from "best" file and update with EXFOR-based weights

#	Zr-90 #	7~ 02
# 0	General # General	21-92
#	#	
ldn	nodel 2 ldmodel 2	
#	#	
# ((n,tot), (n,el), (n,inl) # (n,tot), (n,el), (n,inl)	
#	#	
rva	adjust n 1.0 4. 8. 6. 0.99 rvadjust n 1. 0.01 1.5 0.7 0.99	
rva	adjust n 1.0 12. 16. 14. 0.995 rvadjust n 1. 3. 7. 5. 0.99	
#	#	
# ((n,p), (n,2n), (n,np) # $(n,p), (n,2n), (n,np)$	
#	#	
#	gnadjust 40 93 1.03	
# ((n,a) gpadjust 40 93 1.03	
#	#	
#	# (n,a)	
# ((n,g) #	
#	rvadjust a 1.05	
gan	ngamadjust 40 91 0.75 0.10 #t# avadjust a 1.05	
#	cstrip a 0.4 0.40 #t#	
# C	Other: Isomers, (n,d), (n,t), (n,h) etc. cknock a 0.4 0.40 #t#	
#	#	
bra	anch 40 89 17 1 4 1.0 $\#$ (n,g)	
bra	anch 40 89 20 1 4 1.0 $\#$	
bra	anch 40 89 23 1 4 1.0 gamgamadjust 40 93 0.85 0.20 #t#	
pra	anch 40 89 25 1 4 1.0 $\#$	
bra	anch 40 89 26 1 4 1.0 # Other: Isomers. (n.d). (n.t). (n	,h) etc.
pra	anch 40 89 30 1 4 1.0 $\#$	

Finally, all sampling is done from the real weighted parameter distributions 4000 random TALYS samples: n + "Zr

4000 random TALYS samples: n + "Zr

Weigthed distribution

Number of samples

1.1

1.2

1.3

1.4 1.5

0.9

1

Towards TALYS-2.0

- Full rewrite in Fortran-90/95/03/08:
 - Work already underway.
- Integration of TASMAN:
 - Statistics, optimization (parameter search), sensitivities, covariances, and Total Monte Carlo
- Integration of TEFAL:
 - Complete ENDF-6 formatting from MF1 to MF40
- First: TALYS-1.8 (2015):
 - Pointwise resonance data (Atlas++ and PREPRO routines)
 - Full integration of GEF (Schmidt and Jurado) for FY, nubar, PFNS, PFGS etc.
 - Implementation of Avrigeanu models for alpha OMP and deuteron break-up
- TALYS-2.0: Now that I have done it all, I know how I should have done it, so let's do that: even more modular all-in-one package.

TALYS-1.8 reconstructs resonances (Thanks to Red Cullen and PREPRO)

TALYS: ° $^{\circ}Y(n,\gamma)$

Fission yields

- TALYS is now coupled with GEF, a fission code by Karl-Heinz Schmidt (GSI), which calculates fission observables on a microscopic basis, starting from an excitation energy, spin and parity
- TALYS feeds GEF with that starting point

²³⁴U(n,f)

Experimental data from PhD thesis of Ali Al-Adili, Uppsala University 2013.

More examples: S. Pomp Presentation at FIESTA 2014, Santa Fe 23

"Objective" quality assessment of data libraries

General	Specific	ENDF/B-VII.1	JENDL-4.0	JEFF-3.2	CENDL-3.1	TENDL-2014
Acceptance	Citations					
	Software					
Integral	ICSBEP					
Data	Shielding (fusion)					
	Activation (EASY)	Use 🗸	or numb	ers (C/E	or chi-2) t	o fill boxes
	Decay heat					
	Reactor exps.					
Differential	Thermal xs					
Data	Resonance Integral					
	MACS (30 keV)					
	Other EXFOR data	Per	nuclide or	for the	whole data	library
Completeness	Covariances					
	Gamma production					
	Second. E-A dist.					
	Isomers					
	Recoils					
	200 MeV					
	Nuclides					
	Processability					

Conclusions

- Emphasis for TENDL now equally on differential development and integral testing.
- New "best" (TALYS) input files for each isotope, based on comparison with experimental data: thermal, RI, MACS, all other EXFOR data and integral activation measurements.
- Optimization continues until comparison with (differential and integral) experiments is at least as good as other libraries: again, after 2014 more nuclides fall in this category.
- Completeness (MF1-40) and processability (PREPRO, NJOY): no real competitor left.
- For "big 3": ICSBEP included in the Monte Carlo optimization (this has advanced most for Pu-239)
- TENDL team now scattered over more places, but aims to continue.

