Present Status of the JENDL Project

Osamu IWAMOTO and Kenji YOKOYAMA Japan Atomic Energy Agency

Japanese Nuclear Data Committee

chaired by N. Yamano, Univ. of Fukui

Japan Atomic Energy Agency

Subcommittee on Nuclear Data (H.Harada, JAEA)

- Activation Cross Section Evaluation WG (N.Iwamoto, JAEA) (to be established in 2015)
- ENSDF Group (H.limura, JAEA)
- Japanese Nuclear Data Measurement Network (Y.Watanabe, Kyushu Univ.)
- High Energy Nuclear Data Evaluation WG, closed in March 2015 (S.Kunieda, JAEA)

Subcommittee on Reactor Constants (N.Yamano, Univ. of Fukui)

- Reactor Integral Test WG (G.Chiba, Hokkaido Univ.)
- Shielding Integral Test WG (C.Konno, JAEA)
- WG on Evaluation of Nuclide Generation and Decay Heat (K.Okumura, JAEA)
- Covariance Utilization WG (T.Iwasaki, Tohoku Univ.)

JENDL-4.0/HE

Evaluated neutron & proton nuclear data for 132 nuclei up to 200 MeV

- New evaluation for ²H, ^{6,7}Li and ⁹Be

- ²H : Faddeev 3-body theory with Paris-EST
- ^{6,7}Li : R-matrix analysis + CCONE, DWBA, etc ...
- ⁹Be : OPTMAN-10 & CCONE

- CCONE evaluation

- Kunieda-OMP for nucleons
- Modified Iwamoto-Harada model for pre-equilibrium deuteron and alpha-particle emissions
- CM to Lab. (DDX) conversion with Iwamoto's method

- Inheritances

- JENDL-4.0(u) : all the neutron cross-sections below 20 MeV
- JENDL/HE-2007 : light and actinide nuclei (~30 nuclei)

Evaluation for Li-7

R-matrix analysis for ⁸Be system

- Continuum spectra : CCONE
- IAS-Peak : Legendre & DWBA fit

Evaluation for Be-9

- Optical model analysis with OPTMAN-10 (with local RRM-OMP, IAS direct)
- CCONE evaluation for DDX (much emphasis was placed on (p,n) reaction)

Evaluation for Fe-54

CCONE evaluation (DDX at 61.5MeV) with the modified Iwamoto-Harada model for pre-equilibrium alpha-particle emission

Evaluation for Ni-58

CCONE evaluation proton induced nuclide production cross section

Ni-58(p,x)Ni-56

New evaluations for the next JEDNL

- Objectives
 - Updating old FP evaluations
 - Providing activation cross sections for decommissioning of LWRs
- Sb-121, 123-126 (published in JNST 2014)
- Te-120, 121m, 122-126, 127m, 128, 129m, 130, 131m, 132 (published in JNST 2015)
- I-127, 128, 129, 130, 131, 132 (published in JNST 2015)

Tellurium

Evaluation of covariance

• <u>CCONE-KALMAN</u>

- Total cross section, neutron capture cross section
- Gamma-ray emission spectrum
- Sensitivity calculation
 no. of parameters: 55 for ⁹⁹Tc, 44 for ¹²⁹I
 - CC-OMP(Kunieda+ 2007)
 - Level density
 - Gamma-ray strength function
 - Exciton model parameter

Covariance for I-127, 129 total cross sections

JENDL-4.0 update of ⁸⁸Sr

 The neutron widths of an s-wave resonance and 10 pwave resonances were underestimated mistakenly. They were recompiled.

Chart of the Nuclides 2014

A4 accordion book

Web version will be available soon. http://wwwndc.jaea.go.jp/CN14/index.html

Benchmark of JENDL-4.0

- On-going task of RIT-WG (Reactor Integral Test Working Group) in JENDL committee
 - Development of a comprehensive and ready-to-use standard benchmark set, based on Japanese Monte-Carlo code MVP, for LWR nuclear data by utilizing open and well-evaluated integral experiments, such as ICSBEP and IRPhEP
- Present two main targets
 - Light-water-moderated <u>low-enriched U</u> core
 - Light-water-moderated <u>MOX</u> core
 - Including evaluation of PuO₂ particle size heterogeneous reactivity effect with Monte-Carlo calculation

Light-water-moderated Low-enriched U core benchmark

- Past JENDL-4.0 benchmarking, reported in JNST*
 - 18 data from 10 series of experiments
- Present benchmark set
 - 73 data from 8 series of experiments
 - Including the following parameters:
 - H/U ratio: 1.47 8.65
 - U enrichment: 1.86 7.0 wt%
 - Boron density: 779 1488 ppm
 - Gd density: 0 1.48 g Gd / liter
 - Temperature of water: 20 280 deg. C

* G. Chiba, et al., "JENDL-4.0 Benchmarking for Fission Reactor Applications," J. Nucl. Sci. Eng., Vol.48, No.2, p. 172-187 (2011)

Dependency on U enrichment (all 73 data)

- Large variation is seen due to mixed parameters
- Selection of data are necessary

Dependency on U enrichment (selected 39 data*)

• No significant dependency on U enrichment is seen for the selected data

Dependency on H/U ratio (selected 39 data*)

Experimental error becomes large due to narrow lattice pitch

 No significant dependency on H/U ratio (i.e. neutron spectrum) is seen for the selected data

Light-water-moderated MOX core benchmark

• Past JENDL-4.0 benchmarking, reported in JNST*

- 67 data from 14 series of experiments

- Present benchmark set (on-going)
 - 38 data from 6 series of experiments (for now)
 - with our own evaluation of PuO₂ particle size effect
 - Including the following parameters:
 - H/U ratio: 75 1176
 - Pu enrichment: 1.5 6.6 wt%
 - Fuel pin pitch / number of fuel pins: 1.321 4.318 cm / 121 1487
 - Boron density: 0 1090.4 ppm
 - Temperature of water: 20 235.9 deg. C

* G. Chiba, et al., "JENDL-4.0 Benchmarking for Fission Reactor Applications," J. Nucl. Sci. Eng., Vol.48, No.2, p. 172-187 (2011)

Evaluation of PuO₂ particle size heterogeneous reactivity effect

<Heterogeneous model> (explicitly simulating PuO₂ particles)

<Homogeneous model>

Fuel pin models of Monte-Carlo calculation (MCT003(CRX) case1)

Impact of PuO₂ particle size heterogeneous reactivity effect

- Corrections of the reactivity effect are consistently applied to all experiments
- Present evaluation gives smaller reactivity effects (max. ~ 200 pcm smaller for high H/Pu ratio)

Correction of PuO₂ particle size heterogeneous reactivity effect

- Apparent overestimation is seen when plotting all data without correction and selection
- Correction of the heterogeneous reactivity effect systematically reduces C/E values
- Some odd and different kind of data should be rejected

Dependency on H/Pu ratio (selected 31 data)

heterogeneous reactivity effect

- ◆ KRITZ-2:19(Studsvik), Pu enrichment 1.5wt%
- MCT-009 (CAF, Battelle-PNL) , Pu enrichment 1.5wt%
- ▲ MCT-002 (PRCF, PNL) , Pu enrichment 2.0wt%
- ×MCT-004 (TCA, JAERI) , Pu enrichment 3.0wt%
- * MCT-005(CAF, Hanford-PNL), Pu enrichment 4.0wt%
- MCT-003 (CRX, WREC), Pu enrichment 6.6wt%

 No significant dependency on H/Pu ratio is seen for the corrected and selected 31 data (C/E = 1.0±400pcm)

Future Work

- Completion of developing a comprehensive and ready-to-use standard benchmark set for LWR nuclear data
- Sensitivity analysis for JENDL-4.0 by using the standard benchmark set
- Application of the standard benchmark set to other nuclear data libraries, such as ENDF/B and JEFF, and sensitivity-based cause analysis of library differences (i.e., identification of the important nuclide, reaction and energy range)