ENDF Project Report to WPEC 2015

M. Herman for CSEWG

a passion for discovery

I will NOT talk about:

- CIELO (SG40)
 - H, ¹⁶O, ⁵⁶Fe, ^{235,238}U, ²³⁹Pu
- Fission product yields (SG37)
- New data structure (SG38)
- Thermal scattering law data (SG42)

Summary and Outlook – Standards Work

- NN analysis progressing; more p-p elastic scattering data needed in the 30-50 MeV range. Low-energy parameters retain their earlier (correct) values. Need to extend analysis above 200 MeV.
- New data for n+⁶Li fit in well with the existing data set, and cause no problems with the R-matrix fitting.
- n+^{12,13}C analyses in good shape below 2 MeV. Could produce a natural C standards file in this energy region now. More work is needed on both evaluations at higher energies, however.
- Problem with unrealistically small uncertainties on standards cross sections may be solved by using parameter confidence intervals.
- MBC: we await TPC precision data on 239Pu/235U and ratio to 1H.

NNDC

Prompt Fission γ Rays Talou et al.

- Recent experimental efforts
 - IRMM, Geel, Belgium
 - R. Billnert et al., Phys. Rev. C 87, 024601 (2013); A. Oberstedt et al., Phys. Rev. C 87, 051602(R) (2013);
 - S. Oberstedt et al., Phys. Rev. C 90, 024618 (2014)
 - DANCE, LANL+LLNL
 - M. Jandel et al., references
 - J. Ullmann et al., Phys. Rev. C 87, 044607 (2013)
 - A. Chyzh et al., Phys. Rev. C 90, 014602 (2014), Phys. Rev. C 87, 034620 (2013)

M. B. Chadwick

NNDC

- Recent model calculations
 - Monte Carlo simulations of the decay of fission fragments
 - I. Stetcu et al., Phys. Rev. C 90, 024617 (2014)
 - R. Vogt and J. Randrup, Phys. Rev. C 87, 044602 (2013)
 - O. Litaize and O. Serot, Phys. Rev. C 82, 054616 (2010)
- New evaluations in the works

Results for n_{th} +²³⁵U

- Strong fluctuations of PFGS below 1 MeV, due to γ transitions in fission fragments
- Seen in IRMM experiments with LaBr detectors, but not at DANCE due to poor energy resolution
- Well reproduced by Monte Carlo simulations

Theoretical calculations of fission fragment properties

 Macroscopic-microscopic description of fission successfully models potential energy of nuclei

A.Sierk LANL

- New advanced calculations of nuclei advancing through the potential predict mass, charge and kinetic energy of fission fragments
- Theory will provide nuclear data for isotopes that are challenging to measure
- Measurements of fission correlation helps constrain theoretical models

Brookhaven Science Associates

WPEC 2015 - M. Herman

Work in resolved resonance range

- Resolved resonance evaluations were done for ¹⁸²W, ¹⁸³W, ¹⁸⁴W, ¹⁸⁶W, ⁶³Cu and ⁶⁵Cu
- Thermal data, coherent and incoherent data were used in the evaluation
- Resonance parameter covariance generated
- Resonance ranges extended with the help of highresolution differential data
- RML Format (LRF=7) were used
- Blatt and Biedenharn methodology used for angular data representation

Resolved Resonance Region (RRR) Cross Section Evaluations

No.	Nucleus (I ^π)	$E_{\min} - E_{\max}^{ORNL} (E_{\max}^{existing})$	Method	No. Levels ^(*)	s-wave	p-wave	Evaluator
1 🗸	¹⁸² W(0 ⁺)	10 ⁻⁵ eV–10 (<mark>5.0</mark>) keV	RM	306	171	135	L. C. Leal
2 🗸	¹⁸³ W(1/2 ⁻)	10 ⁻⁵ eV–5 (<mark>2.2</mark>) keV	RM	387	346	21	M. T. Pigni
3 🗸	¹⁸⁴ W(0 ⁺)	10 ⁻⁵ eV–10 (<mark>4.0</mark>) keV	RM	178	94	84	L. C. Leal
4 🗸	¹⁸⁶ W(0 ⁺)	10 ⁻⁵ eV–10 (<mark>8.3</mark>) keV	RM	169	95	74	L. C. Leal
5 🗸	⁶³ Cu (3/2⁻)	10⁻⁵ eV-300 (<mark>100</mark>) keV	RM	527	323	204	V. Sobes
6 🗸	⁶⁵ Cu (3/2⁻)	10⁻⁵ eV-300 (<mark>100</mark>) keV	RM	762	525	237	V. Sobes

RM – Reich-Moore Approximation

(*) bound and external levels not included

Brookhaven Science Associates

WPEC 2015 - M. Herman

W cross section evaluation

		σt	σγ	σs	R'	b _{coh}	b _{inc}
182 W	ORNL	28.18±0.40	20.31±0.64	8.87±0.28	7.6	7.11	-
	ATLAS	-	19.90±0.30	8.84±0.30	8.1	7.04	-
¹⁸³ W	ORNL	15.56±0.50	9.87±0.53	5.69±0.11	7.9	6.47	-0.43
	ATLAS	-	10.40±0.20	2.40±0.60	8.1	6.59	-
¹⁸⁴ W	ORNL	8.98±0.40	1.63±0.13	7.35±0.10	7.6	7.41	-
	ATLAS	-	1.70±0.10	7.35±0.10	8.0	7.55	-
¹⁸⁶ W	ORNL	37.97±0.40	37.88±0.59	0.09±0.02	7.7	-0.76	-
	ATLAS	-	38.10±0.50	0.09±0.01	7.6	-0.73	_

... and Calculated Eigenvalues

Compare calculated eigenvalues for E71 versus the new ORNL ^{182,183,184,186}W evaluations

Ponchmark	E71 k		E71 + revised ^{iso} W	
Deficilitatik	L/L K _{calc}		(GForge, v633-v636)	
HMF3.8	1.00211(7)	638 keV	1.00141(9)	
HMF3.9	1.00223(7)	579 keV	1.00180(9)	
HMF3.10	1.00505(7)	531 keV	1.00558(9)	
HMF3.11	1.00881(6)	514 keV	1.01089(9)	
HMF49.1	0.99799(6)	803 keV	0.99781(9)	
HMF49.2	0.99974(6)	765 keV	0.99946(9)	
HMF49.3	0.99869(6)	726 keV	0.99849(9)	
HMF50	0.99810(6)	647 keV	0.99793(9)	
HMM17	0.99540(8)	176 eV	0.99654(12)	
PMF5	1.00112(6)	1.008 MeV	1.00063(9)	
UMF4.1	0.99866(6)	985 keV	0.99857(9)	
UMF4.2	0.99559(6)	893 keV	0.99528(9)	

UNCLASSIFIED

Cu evaluations at thermal (Sobes)

Motivation

- Nuclear Data Advisory Group (NDAG) identified 63Cu and 65Cu important for criticality safety applications
- Measurements made at the Oak Ridge Electron Linear Accelerator (ORELA) by M. S. Pandey, J. B. Garg, and J. A. Harvey (1977)
 - Three major improvements of consequence to the Zeus benchmarks:
 - Resolved resonance region expanded three-fold
 - Capture cross section evaluated based on experimental measurements
 - Detailed angular distributions generated for elastic scattering

L. Leal

NNDC

Cu evaluations at thermal

0.02

0.04

- A better definition of the negative external levels if we fit a differential cross section
- A better definition of the uncertainty and correlations at the thermal energy

0.06

Energy (eV)

0.08

Benchmark Results

NNDC

New Cross Section Evaluation Outlook in Fast Neutron Region

- Ar-40
 - new evaluation above resonances, based on GEANIE data
- Ni-58, 59, 60, 61, 62, 64
 - new evaluations above resonance regions with CoH3
 - angular distribution for Ni-58 and 60 from the ORNL resonance parameters (WPEC SG35)
- Cu-63, 65
 - new evaluation above resonance regions with CoH3
 - see benchmark results by Kahler
- As-73
 - LANL local evaluation, to be added to the repository
- Np-236m
 - New isotope, new evaluation
 - 60 keV level, half-life of 22.5h
- K-38 photo-induced reaction
 - funded by isotope production, ENDF-6 file not yet produced

NNDC

Ar-40 Evaluation

- ENDF/B-VII.1 Ar40 = JENDL-3.2 evaluated in 1994
 - New GEANIE data available [S. MacMullien et al. PRC85,064612 (2012)]
 - TUNL new (n,p) data
 - Issue of EPMAX > Q-values; particle energy spectra given in MF=5

New evaluation with the CoH3 code

- Resonance (JENDL-3.2) up to 1.5MeV
- Cross sections were fitted to available experimental data
- Angular and energy distributions were recalculated for better energy conservation

Brookhaven Science Associates

Ni-58(n,alpha) Reaction Cross Section

Ni-58(n,p) and (n,2n) Reaction Cross Sections

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

VNS

Elastic Scattering Angular Distribution

Elastic scattering angular distributions at low energies

- Reconstructed from R-M resolved resonance parameters using BB formula, and smoothed
- Ni58 and 60 only
- Produced more forward-peaked scattering ang. dist.
- Method developed under WPEC/SG35 enables us to go beyond RRR

Slide 7

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

AL LABORATORY

UNCLASSIFIED

Cu-63, 65 Capture Cross Section

ZEUS Benchmarks (HMF72, HMI6)

^{63,65}Cu data sets
 from Kawano.

 Latest results (open squares) show reduced bias in k_{eff}, but still have work to do.

UNCLASSIFIED

Statistical Hauser-Feshbach Calculation for Photo Reaction

In 1990, ENDF/B-VI.0 expanded atomic data to include electrons and atomic relaxation

Based on S. Perkins & Red Cullen's EPDL

- UCRL-50400 Vol. 6 Rev. 4 (1989)
 - photons from 10 eV 100 GeV

Revised in 1997

 photons extended down to 1 eV, add photoionization to compute anomalous scattering factors, photo-excitation data

Major upgrade in 2001: atomic relaxation (EADL) & electrons (EEDL)

- UCRL-50400 Vol. 31 (1991) EEDL
- UCRL-50400 Vol. 30 (2001) EADL
- Electron data translated to ENDF by R. MacFarlane

EPICS2014

Major changes:

- Corrected incorrectly translated electron data (MF/ MT=26/527, <E> from Bremstrahlung)
- Increase file precision with ENDF2C
- "Changes where I felt they were necessary"

Major change not made:

- Revising transition energies to match results of Deslattes, et al., "X-ray transition energies: a new approach to a comprehensive evaluation", Rev. Mod. Phys. 75, 35-99 (2003).
- Used for validation

Update seems minor, but important to upgrade all sub libraries as a set to maintain internal consistency

Improved Neutron Capture Gamma-Ray Data for Li and F

- Gammas are 6-12 MeV (σ!) Clear of competing lines More difficult to shield Fingerprint of capturing isotope
- Passive or active neutron sources
- Neutrons from spontaneous fission implies actinides presence
- Neutrons coupled to gammas
- -Thermal Capture Dominates

Measurement of gamma spectra from Pu

Used in ANY spectroscopy application, Emergency response, Nonproliferation, etc.

WPEC 2015 - M. Herman

F had few changes in ENDF

NAT

ADVANCE quality assurance system for ENDF

- On every commit of every evaluation in ENDF
 - Check out evaluation
 - Run through a battery of tests
 - Process with customer processing codes
 - Generate comparison plots
 - Generate HTML report of evaluation

Automation is better!

- Find data problems before the customers!
- Far faster/better than old PHASE I review
- Available at <u>http://</u> <u>www.nndc.bnl.gov/endf/b7.dev/</u> <u>qa/index.html</u>

Major change made this year: Testing atomic data to support EPICS

All atomic data tested by

- NNDC Codes (STAN, STANEF, CHECKR, FIZCON, PSYCHE)
- PREPRO (LINEAR)
- Fudge

Generate plots of

- photon and electron cross sections
- photon form factors
- photon anomalous scattering factors

Major changes (to be) made this year:

Completed

All atomic data tested by

- NNDC Codes (STAN, STANEF, CHECKR, FIZCON, PSYCHE)
- PREPRO (LINEAR)
- Fudge

Generate plots of

- photon and electron cross sections
- photon form factors
- photon anomalous scattering factors

Brookhaven Science Associates

WPEC 2015

To be done this summer

Automated benchmarking

- Have COG and COG library builders
- Have ICSBEP test suite
 from COG

Improvements to the Decay Sublibrary Improve antineutrino spectra calculations by including I β from TAGS experiments and I β following fit to Tengblad 1990 data

92Rb Use the 2006LH01 gamma normalization
137I Run LOGFT, Added 2 E2 gammas, run BRICC
135sb Run LOGFT, Added 2 E2 gammas, run BRICC

95Sr,140Cs,95Y,143La,145La,141Cs,143Ba,91Rb,93Rb,94Rb,144La use Iβ TAGS

82Ge Use ENSDF assuming Iβ(GS)=083Ge Use ENSDF assuming Iβ(GS)=1

90Br,96Rb,98Y,138I,88B,99Y,89br,134sb,95rb,82As Adjust the beta feeding to match Rudstam's data

91Br Use Woehr beta feeding, neutron have to be added

(n,f) β-spectra calculations

No adjustable parameters Phys. Rev. C **91**, 011301(R) (2015)

For energies > 5 MeV, the electron and antineutrino spectra are mainly due to about 20 nuclides The decay of these nuclides is of great interest Brookhaven Science Associates WPEC 2015 - M.H

\overline{v} + p \rightarrow n + e⁺ cross section integrated spectra

IAEA CRP on Beta delayed neutron emitters

Will result in newly evaluated values of Pn and $T_{1/2}$ for delayed neutron emitters, ex, 88Br. These data will be incorporated in ENSDF as well as the sub-library.

 $\overline{v_d}$: Delayed nu-bar, number of neutrons for single fission event. It can be calculated as:

 $v_d = \Sigma CFY_i Pn_i$, about 0.015/fission for 235U

CFY: cumulative fission yield.

Pn: beta-delayed neutron probability.

Delayed nu-bars calculated using Pn and CFY

As before, but plotting lighter and heavier fission fragments contributions

WPEC 2015 - M. Herman

Now looking at the contributions of the different fission modes.

Brookhaven Science Associates

WPEC 2015 - M. Herman

NATIONAL

Current Benchmark Evaluation Efforts to Support Integral Nuclear Data

> Mini-CSEWG-2015 7 May 2015

John D. Bess Idaho National Laboratory (INL)

www.inl.gov

International Handbook of Evaluated Reactor Physics Benchmark Experiments

March 2015 Edition

- 20 Contributing Countries
- Data from 143 Experimental Series performed at 50 Reactor Facilities
- Data from 139 are published as approved benchmarks
- Data from 4 are published only in DRAFT form

http://irphep.inl.gov/ http://www.oecd-nea.org/science/wprs/irphe/

For more details see presentations at: https://indico.bnl.gov/conferenceDisplay.py?confld=965

Laboratory)

Mini-CSEWG-2015

chaired by Mike Herman (BNL), Mark Chadwick (Lanl), Dave Brown

from Thursday, May 7, 2015 at 09:00 to Friday, May 8, 2015 at 13:00 (US/Eastern) at Berkner (B)

Thursday, May 7, 2015

09:00 - 12:00	CSEW Conver	CSEWG Evaluation Committee Convener: Dr. Mark Chadwick (Lanl)		
	09:00	Status of C & H standards evaluations 10'		
		Speaker: Dr. Mark Chadwick (Lanl)		
		Material: Slides		
	09:10	FPYs 10'		
		Speaker: Dr. Mark Chadwick (Lanl)		
	09:20	Cu and W 20'		
		Speaker: Dr. Luiz Leal (ORNL)		
		Material: Slides		
	09:40	Summary of updated data at LANL 20'		
		Speaker: Dr. Toshihiko Kawano (Los Alamos National		
		Material: Slides 🔣		

Backup slides

What's in the electro-atomic sub library?

- Elastic transport,
 - transport cross section, σ_{el}
 (1-E<cosθ>) (b)
- Large angle elastic scattering (over cosθ = -I. to 0.999999)
 - integrated LACS cross section (b),
 - average energy of the scattered electron (MeV),
 - average energy to the residual atom, i.e., local deposition (MeV),
 - angular distribution of the scattered electron.

Elastic scattering

 integrated scattering cross section (b),

- Ionization, by subshell
 - integrated cross section (b),
 - average energy to the scattered and recoil electron (MeV)
 - spectra of the recoil electron (MeV⁻¹).

Bremstrahlung

- integrated cross section (b),
- average energy of the secondary electron and photon (MeV) ,
- spectra of the secondary photon (MeV⁻¹).
- Excitation
 - integrated cross section (b),
 - average energy to the residual atom, i.e., local deposition (MeV).

```
green == ADVANCE can plot
```

What's in the photo-atomic sub library?

- Coherent scattering,
 - integrated cross section (b),
 - form factor,
 - real and imaginary anomalous scattering factors,
 - average energy of the scattered photon (MeV),
- Incoherent scattering
 - integrated cross section (b),
 - scattering function,
 - average energy of the scattered photon and recoil electron (MeV).

Total photoelectric reaction

- integrated cross section (b),
- average energy to the residual atom, i.e., local deposition (MeV),
- average energy of the secondary photons and electrons (MeV).

- Photoelectric reaction, by subshell
 - integrated cross section (b),
 - average energy to the residual atom, i.e., local deposition (MeV),
 - average energy of the secondary photons and electrons (MeV).
- Pair production reaction
 - integrated cross section (b),
 - average energy of the secondary electron and positron (MeV).
- Triplet production reaction
 - integrated cross section (b),
 - average energy of the secondary electron and positron (MeV).

green == ADVANCE can plot

What's in the photo-atomic sub library?

- Coherent scattering,
 - integrated cross section (b),
 - form factor,
 - real and imaginary anomalous scattering factors,
 - average energy of the scattered photon (MeV),
- Incoherent scattering
 - integrated cross section (b),
 - scattering function,
 - average energy of the scattered photon and recoil electron (MeV).

Total photoelectric reaction

- integrated cross section (b),
- average energy to the residual atom, i.e., local deposition (MeV),
- average energy of the secondary photons and electrons (MeV).

- Photoelectric reaction, by subshell
 - integrated cross section (b),
 - average energy to the residual atom, i.e., local deposition (MeV),
 - average energy of the secondary photons and electrons (MeV).
- Pair production reaction
 - integrated cross section (b),
 - average energy of the secondary electron and positron (MeV).
- Triplet production reaction
 - integrated cross section (b),
 - average energy of the secondary electron and positron (MeV).

green == ADVANCE can plot

ATIONAL LAB