
Automatic generation 
of specifications

D. Brown (BNL)



Multiple sources of 
formatting information

• Specifications documents (GPDC, documentation, top level, 
PoPs) — all partially out of date with GNDS-1.9


• Requirements document — only source for planned, but not yet 
properly implemented formats (TSL, FPY)


• XML schema file (gnd.xsd) — partially out of date with 
GNDS-1.9, has no descriptive information


• XML files themselves — most up to date, including examples of 
current (not final) implementation of TSL, FPY

All provide partial information and complement one another. 
There is no authoritative reference.



grokGNDS.py 
attributes 


nodes

(childNodes)

Develop data structures that 
contain all information required 

to describe format

styles

reactionSuite
+ projectile : XMLName
+ target : XMLName
+ evaluation : attributeValue
+ projectileFrame : frame
+ format : attributeValue

externalFiles documentations PoPs resonances reactions orphanProducts sums fissionComponents productions incompleteReactions applicationData

Include: 
• Occurrence limits

• Required or not

• Root node or not

• Data type information

• List of child nodes

• Detailed descriptions  

coded in LaTeX

A technological solution



Develop data structures that 
contain all information required 

to describe format

styles

reactionSuite
+ projectile : XMLName
+ target : XMLName
+ evaluation : attributeValue
+ projectileFrame : frame
+ format : attributeValue

externalFiles documentations PoPs resonances reactions orphanProducts sums fissionComponents productions incompleteReactions applicationData

Include: 
• Occurrence limits

• Required or not

• Root node or not

• Data type information

• List of child nodes

• Detailed descriptions  

coded in LaTeX

Additional functionality 
• Read/write variety of formats

• LaTeX and/or UML output

• Updating functionality

JSON

LaTeXgrokGNDS.py 
attributes 


nodes

(childNodes)

A technological solution



A technological solution

JSON

LaTeX

HTML  
(planned)

text

others?

UML 
(currently using dot,  

TikZ planned)

xsdContained in 
nodes.py

GNDS/XML 
(examples)

grokGNDS.py 
attributes 


nodes

(childNodes)



• Since we’ve designed a data 
hierarchy, we need need to 
crawl it to find out what is in it


• Standard computing 
algorithm: recursive “Tree 
walking”


• Very easy to implement


• As visit nodes in a given 
hierarchy, can update node 
attributes/children

Key ingredient:  
a “tree walker”

Contained in grokGNDS.py



The plan
1. Initialize database of formats with 

schema (gnd.xsd) 

2. Crawl representative sample of 
XML files to update database 

• Neutrons (w/ & w/o covariance, fission)


• Charged particles


• Photo nuclear


• Decay


• Fission product yields


• Atomic data


• Processed data


3. Serialize output to JSON (or 
equivalent) 

4. Update descriptions by hand 
using specifications draft 
documents 

5. Serialize result to LaTeX files 

6. Frame file can be used to organize 
specifications using \include{} 

7. If develop xsd back-translator, 
then can keep specifications and 
xsd file in sync



The plan
1. Initialize database of formats with 

schema (gnd.xsd) 

2. Crawl representative sample of 
XML files to update database 

• Neutrons (w/ & w/o covariance, fission)


• Charged particles


• Photo nuclear


• Decay


• Fission product yields


• Atomic data


• Processed data


3. Serialize output to JSON (or 
equivalent) 

4. Update descriptions by hand 
using specifications draft 
documents 

5. Serialize result to LaTeX files 

6. Frame file can be used to organize 
specifications using \include{} 

7. If develop xsd back-translator, 
then can keep specifications and 
xsd file in sync

Workflow currently 
automated with 
Makefiles



The plan
1. Initialize database of formats with 

schema (gnd.xsd) 

2. Crawl representative sample of 
XML files to update database 

• Neutrons (w/ & w/o covariance, fission)


• Charged particles


• Photo nuclear


• Decay


• Fission product yields


• Atomic data


• Processed data


3. Serialize output to JSON (or 
equivalent) 

4. Update descriptions by hand 
using specifications draft 
documents 

5. Serialize result to LaTeX files 

6. Frame file can be used to organize 
specifications using \include{} 

7. If develop xsd back-translator, 
then can keep specifications and 
xsd file in sync

Contained in 
makeSpecs.py



This is what we get

D
R
A
F
T

temperature

evaluated

+ label : XMLName
+ library : attributeValue
+ version : Empty
+ date : date

projectileEnergyDomain

Figure 3: UML diagram for evaluated

evaluated

Specifications for evaluated

Node name: evaluated None
Attributes: The list of additional allowed attributes are:

label [XMLName, required] None
library [attributeValue, required] None
version [Empty, required] None
date [date, required] None

Child nodes: The list of additional allowed Child nodes are:
temperature: [required, may appear any number of times] None
projectileEnergyDomain: [required, may appear any number of times] None

Example of evaluated

<evaluated
label="..."
library="..."
version="..."
date="...">

<temperature>...</temperature>
<projectileEnergyDomain>...</projectileEnergyDomain></evaluated>

4



This is what we get

D
R
A
F
T

temperature

evaluated

+ label : XMLName
+ library : attributeValue
+ version : Empty
+ date : date

projectileEnergyDomain

Figure 3: UML diagram for evaluated

evaluated

Specifications for evaluated

Node name: evaluated None
Attributes: The list of additional allowed attributes are:

label [XMLName, required] None
library [attributeValue, required] None
version [Empty, required] None
date [date, required] None

Child nodes: The list of additional allowed Child nodes are:
temperature: [required, may appear any number of times] None
projectileEnergyDomain: [required, may appear any number of times] None

Example of evaluated

<evaluated
label="..."
library="..."
version="..."
date="...">

<temperature>...</temperature>
<projectileEnergyDomain>...</projectileEnergyDomain></evaluated>

4

I didn’t fill in the 
description fields yet



This is what we get

D
R
A
F
T

temperature

evaluated

+ label : XMLName
+ library : attributeValue
+ version : Empty
+ date : date

projectileEnergyDomain

Figure 3: UML diagram for evaluated

evaluated

Specifications for evaluated

Node name: evaluated None
Attributes: The list of additional allowed attributes are:

label [XMLName, required] None
library [attributeValue, required] None
version [Empty, required] None
date [date, required] None

Child nodes: The list of additional allowed Child nodes are:
temperature: [required, may appear any number of times] None
projectileEnergyDomain: [required, may appear any number of times] None

Example of evaluated

<evaluated
label="..."
library="..."
version="..."
date="...">

<temperature>...</temperature>
<projectileEnergyDomain>...</projectileEnergyDomain></evaluated>

4

Child nodes 
hyperlinked to 

appropriate sections



This is what we get

D
R
A
F
T

temperature

evaluated

+ label : XMLName
+ library : attributeValue
+ version : Empty
+ date : date

projectileEnergyDomain

Figure 3: UML diagram for evaluated

evaluated

Specifications for evaluated

Node name: evaluated None
Attributes: The list of additional allowed attributes are:

label [XMLName, required] None
library [attributeValue, required] None
version [Empty, required] None
date [date, required] None

Child nodes: The list of additional allowed Child nodes are:
temperature: [required, may appear any number of times] None
projectileEnergyDomain: [required, may appear any number of times] None

Example of evaluated

<evaluated
label="..."
library="..."
version="..."
date="...">

<temperature>...</temperature>
<projectileEnergyDomain>...</projectileEnergyDomain></evaluated>

4

Valid types defined in 
“General Purpose Data 
Container” document



This is what we get

D
R
A
F
T

temperature

evaluated

+ label : XMLName
+ library : attributeValue
+ version : Empty
+ date : date

projectileEnergyDomain

Figure 3: UML diagram for evaluated

evaluated

Specifications for evaluated

Node name: evaluated None
Attributes: The list of additional allowed attributes are:

label [XMLName, required] None
library [attributeValue, required] None
version [Empty, required] None
date [date, required] None

Child nodes: The list of additional allowed Child nodes are:
temperature: [required, may appear any number of times] None
projectileEnergyDomain: [required, may appear any number of times] None

Example of evaluated

<evaluated
label="..."
library="..."
version="..."
date="...">

<temperature>...</temperature>
<projectileEnergyDomain>...</projectileEnergyDomain></evaluated>

4

Occurrence/Optionality 
information taken from 

schema or guessed based 
on sample XML files



Special cases: TSL & FPY

• Both focus of Sub Groups with new and moderately 
complex requirements that go far beyond ENDF-6


• Neither focus of BNL/LANL/LLNL/ORNL efforts to date


• Quick-n-dirty implementation basically quick translation 
of ENDF, adding no new functionality, mainly to meet 
ENDF/B-VIII.0 release needs


• Argue for proper implementation of these formats in next 
GNDS version


