Status of LLNL's support for GNDS: from evaluated nuclear data to transport codes

WPEC 2018 / GNDS-B Paris, France May 16 2018

Lawrence Livermore National Laboratory Marie-Anne Descalle

LLNL-PRES-749977

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL Codes from A to Z

- FUDGE
 - Python based GNDS infrastructure toolkit
- GIDI
 - C++ reader for transport codes
- MCGIDI
 - C++ sampler for Monte Carlo transport codes
- Mercury
 - Monte Carlo transport code
- Ardra
 - Sn transport code
- V&V suite

FUDGE: For Updating Data and Generating Evaluation

- FUDGE toolkit
 - Python 2.7 with extension in C and C++ to handle computationally expensive tasks
 - Translate LLNL ENDL and ENDF-6 to GNDS, and GNDS to ENDF-6
 - Manage, manipulate, view, check and process GNDS data
- Processing:
 - Converts units
 - Reconstructs cross sections and angular data for resonance parameters
 - Heats cross section
 - Creates cdf from pdf for Monte Carlo sampling
 - Calculated energy data
 - Puts cross sections on a common grid for Monte Carlo
 - Multi-groups data (with upscatter for Sn transport)
- **Open source**: released under BSD license

Download fudge via http://www.nndc.bnl.gov/endf/codes/FUDGE/index.html

Lawrence Livermore National Laboratory

Status of Translation/Processing of ENDF to GNDS

- **Translation** of the following ENDF sub-libraries
 - Note that the definition for nfy and sfy is not finalized in GNDS

neutrons	protons	deuterons	tritons
helium3s	gammas	photoat	standards
electrons	decay	atomic_relax	thermal_scatt
nfy	sfy	alphas	

- FUDGE handles all properly formatted ENDF-6 formatted files
 - In ENDF/B-VII.1, VIII.0
 - Except for new data format for fission in ENDF/B-VIII.0
- **Processing** of the following ENDF sub-libraries

neutrons	protons	deuterons	tritons
gammas	helium3s	photoat	alphas
	TO DO LIST • Therm • URR	WS S	

GIDI & MCGIDI: General Interaction Data Interface

- GIDI version 3
 - C++ API to read GNDS files for transport codes
 - Can get data at any level in GNDS structure
 - Multi-group collapsing
 - For vectors and matrices
 - Transport correction
 - Calculates multi-group energy deposition
 - Complete for neutrons, photons and charged particles

- MCGIDI version 3: Monte Carlo GIDI
 - C++ API to store and sample for Monte Carlo transport codes
 - Uses GIDI to read data, then puts it into better form for optimal MC sampling
 - Handles point-wise cross sections and pdf/cdf distributions
 - Supports moving objects to GPUs
 - Will sample a reaction for a protare and outgoing distribution
- Currently working on:
 - point-wise energy deposition
 - multi-group and fixed-grid support for cross sections, deposition energy, etc.
 - photo-atomic
- **Open Source:** will be released *soon* under BSD license

GIDI & MCGIDI: General Interaction Data Interface

- GIDI version 3
 - C++ API to read GNDS files for transport codes
 - Can get data at any level in GNDS structure
 - Multi-group collapsing
 - For vectors and matrices
 - Transport correction
 - Calculates multi-g TO DO LIST (partial)
 deposition
 - Thermal scattering lawsURR probability tables
 - Complete for neu charged particles

- MCGIDI version 3: Monte Carlo GIDI
 - C++ API to store and sample for Monte Carlo transport codes
 - Uses GIDI to read data, then puts it into better form for optimal MC sampling
 - Handles point-wise cross sections and pdf/cdf distributions
 - Supports moving objects to GPUs
 - a reaction for a protare and outgoing
- Currently working on:
 - point-wise energy deposition
 - multi-group and fixed-grid support for cross sections, deposition energy, etc.
 - photo-atomic
- **Open Source:** will be released *soon* under BSD license

GNDS is in production now

LLNL-PRES-XXXXXX

Testing ENDF/B libraries in GNDS format

- Two ENDF libraries were translated and processed with FUDGE into GNDS format
 - ENDF/B-VII.1
 - ENDF/B-VIII.0

Code	Code Type	Run mode	Data Format/API	Benchmark tests	Cross- sections
Mercury	Monte Carlo	Batch	GNDS/ GIDI/ MCGIDI	Criticality: 123 fast assemblies Reaction ratios: 3 assemblies	Continuous Energy
Ardra	Deterministic Sn	Interactive	GNDS/ GIDI	Criticality:79 assemblies	Multigroup: 230 groups

 Results were compared to MCNP6 - ENDF/B-VII.1 and VIII.0 results (2017)

Bare assemblies: Godiva, Jezebel, Jezebel240,...

Adding Ardra results

Conclusion

- Processing with FUDGE is significantly faster compared to previous tools
- LLNL implemented the GNDS format for evaluated and processed nuclear data
 - FUDGE toolkit
 - GIDI/MCGIDI APIs now in ARDRA and Mercury transport codes
- Tested on ENDF/B-VIII.0 and VII.1 libraries in ENDF-6 format
 - Translation and processing
 - Verification and Validation using LLNL V&V test suite
 - Fast criticality benchmarks (123 Mercury cases, 79 Ardra cases)
 - Reaction ratios (3 Mercury cases)
 - Pulsed spheres coming soon
- Comparison with MCNP6 results published in ENDF/B-VIII.0 release paper

Future work

- Complete GNDS specifications
 - WPEC meeting in Paris, May 2018
- FUDGE Processing
 - Neutron thermal scattering laws
 - Unresolved resonance probability tables
 - Multi-band (Sn)
 - GNDS to ACE, NDI, etc.
- GIDI / MCGIDI
 - Neutron thermal scattering laws
 - Unresolved resonance probability tables
 - Longer term: investigate On-the-fly heating and multi-grouping by GIDI (GPUs)
- CODES: ARDRA & Mercury
 - Multi-band
- Kiwi -> FUDGE Creating realizations for Uncertainty Quantification

Useful links

- GNDS
 - https://www.oecd-nea.org/science/wpec/sg38/
- FUDGE
 - http://www.nndc.bnl.gov/endf/codes/FUDGE/index.html
- GIDI/MCGIDI
 - Coming soon
- ENDF/B-VIII.0
 - ENDF-6: http://www.nndc.bnl.gov/endf/b8.0/download.html
 - GNDS: http://www.nndc.bnl.gov/endf/b8.0/gndsfiles.html

