
LANL Activities Regarding GNDS

LA-UR-18-24032

May 14, 2018

1



SG43 (API) Status Report



SG43 Mandate

Particular infrastructure needs identified by SG38 as being fundamentally will

necessary include:

• An Application Programming Interface (API) for reading and writing

data in the new structure; and

• Checking codes to help validate new evaluations and fix problems

identified during validation. These include checks for proper formatting

and completeness.

2



SG43—Initial Subcommittees

API Design (Caleb Mattoon)

• API naming standards

• Low-level abstraction

• Fill out initial API details

Physics Checking (Jeremy Conlin)

• Compile list of physics checks

• Standardize severity levels

• Standardized output reporting

https://github.com/GeneralizedNuclearData/SG43/wiki

3

https://github.com/GeneralizedNuclearData/SG43/wiki


SG43—Initial Subcommittees

API Design (Caleb Mattoon)

• API naming standards

• Low-level abstraction

• Fill out initial API details

Physics Checking (Jeremy Conlin)

• Compile list of physics checks

• Standardize severity levels

• Standardized output reporting

https://github.com/GeneralizedNuclearData/SG43/wiki

3

https://github.com/GeneralizedNuclearData/SG43/wiki


Combined Work

• Want usage case (e.g., physics checking) to help inform how the API functions

• Implement just enough of the API to perform a simple physics check

• Adjust API based on lessons learned

• Repeat

4



SG43 Agenda

• Introduction

• Progress towards meeting mandate

• API

• Physics checking

• Thoughts on API design

• Existing GNDS implementations

• GIDI at LLNL

• AMPX at ORNL

• Data testing

• Final discussion

5



Physics Testing



SG43 Mandate

Particular infrastructure needs identified by SG38 as being fundamentally will

necessary include:

• An Application Programming Interface (API) for reading and writing

data in the new structure; and

• Checking codes to help validate new evaluations and fix problems

identified during validation. These include checks for proper formatting

and completeness.

6



SG43 Mandate

Particular infrastructure needs identified by SG38 as being fundamentally will

necessary include:

• An Application Programming Interface (API) for reading and writing

data in the new structure; and

• Checking codes to help validate new evaluations and fix problems

identified during validation. These include checks for proper formatting

and completeness.

6



Severity Levels

INFO Informational messages; typically given after earlier problem.

NOTICE Not an error condition, but may require more investigation or handling.

WARNING The data is not perfect, but we can work around it.

ERROR The data is clearly wrong and there is no unambiguous way to fix it.

FATAL Something really bad happened—can’t continue.

7



Severity Levels

INFO Informational messages; typically given after earlier problem.

NOTICE Not an error condition, but may require more investigation or handling.

WARNING The data is not perfect, but we can work around it.

ERROR The data is clearly wrong and there is no unambiguous way to fix it.

FATAL Something really bad happened—can’t continue.

7



Severity Levels

INFO Informational messages; typically given after earlier problem.

NOTICE Not an error condition, but may require more investigation or handling.

WARNING The data is not perfect, but we can work around it.

ERROR The data is clearly wrong and there is no unambiguous way to fix it.

FATAL Something really bad happened—can’t continue.

7



Physics Requirements

• Cross Section Requirements

• Secondary Distribution Requirements

• Multiplicity Requirements

• Fission ν Requirements

• Resonance Requirements

• Resolved Resonance Region Requirements

• Unresolved Resonance Region Requirements

• Derived Data Requirements

8



Cross Section Requirements

• Monotonically increasing energy grid

• Discontinuity with > 2 equivalent energy points is an error

• Strictly positive energy values.

• No negative* cross section values.

• Appropriate kinematic threshold

threshold = −Q
A + Ai

A
(1)

• Partial cross sections sum to total.

• No abnormally large or abnormally small cross section values.

9



Secondary Distribution Requirements

• Monotonically increasing energy grid.

• Monotonically increasing cosine grid.

• Secondary energy ≤ incident energy*.

• No negative angular probability values.

• No abnormally small angular probability values.

10



Multiplicity Requirements

• Monotonically increasing energy grid.

• No negative multiplicity values.

• No abnormally large or small multiplicity values.

Fission ν Requirements.

• Delayed neutron fraction must sum to 1.0.

11



Resolved Resonance Region Requirements

12



Unresolved Resonance Region Requirements

• Partial reactions must sum to total.

• No negative probability table values.

13



Derived Data Requirements

• Strictly positive heating values.

• No abnormally large heating values.

14



Reporting Results

Output needs to be:

• Computer readable—not arbitrary text

• Human readable—arbitrary formatting

XML provides both

• Computer readable—tags & attributes/values

• Human readable—tag body

JUnit output has become somewhat of a standard testing output framework.

• Java-based testing framework

• Python (unittest), C++ (Catch2) (others?) libraries to produce JUnit compatible

output

15

https://junit.org
https://docs.python.org/3.6/library/unittest.html
https://github.com/catchorg/Catch2


Reporting Results

Output needs to be:

• Computer readable—not arbitrary text

• Human readable—arbitrary formatting

XML provides both

• Computer readable—tags & attributes/values

• Human readable—tag body

JUnit output has become somewhat of a standard testing output framework.

• Java-based testing framework

• Python (unittest), C++ (Catch2) (others?) libraries to produce JUnit compatible

output

15

https://junit.org
https://docs.python.org/3.6/library/unittest.html
https://github.com/catchorg/Catch2


Reporting Results

Output needs to be:

• Computer readable—not arbitrary text

• Human readable—arbitrary formatting

XML provides both

• Computer readable—tags & attributes/values

• Human readable—tag body

JUnit output has become somewhat of a standard testing output framework.

• Java-based testing framework

• Python (unittest), C++ (Catch2) (others?) libraries to produce JUnit compatible

output

15

https://junit.org
https://docs.python.org/3.6/library/unittest.html
https://github.com/catchorg/Catch2


JUnit Example 1

<?xml version="1.0" encoding="UTF-8" ?>

<testsuites id="20180501_170519" name="Physics_check (2018-05-01 17:05:19)"

tests="225" failures="1262" time="0.001">

<testsuite id="cross.section.errors"

name="Cross Section Errors" tests="6" failures="1" time="0.001">

<testcase id="partials.add.to.total"

name="Partial cross sections must sum to total" time="0.001">

<failure message="Partial cross sections do not sum to total"

type="WARNING">

WARNING: Partial cross sections do not sum to total

Total reaction: 18

Partial reactions: 19--21, 38

File: /ENDF/neutrons/n-092_U_235.xml

</failure>

</testcase> </testsuite> </testsuites> 16



JUnit Example 2

<?xml version="1.0" encoding="UTF-8" ?>

<testsuites id="20180501_171519" name="Physics_check (2018-05-01 17:15:19)"

tests="225" failures="1262" time="0.001">

<testsuite id="multiplicity.errors"

name="Multiplicity Errors" tests="6" failures="1" time="0.001">

<testcase id="no.negative.multiplicities"

name="Multiplicities must be positive" time="0.001">

<failure message="Found negative multiplicity"

type="ERROR">

ERROR: Negative multiplicity value found

multiplicity: -2.4

energy: 1.0 MeV

File: /ENDF/neutrons/n-092_U_235.xml

</failure>

</testcase> </testsuite> </testsuites> 17


	EG-GNDS
	SG43 (API) Status Report

	SG43
	Physics Testing
	Severity Levels
	Physics Checks



