A Simplified Accident Scenario

Lars Hallstadius
Westinghouse Electric Company LLC
Objectives

- Propose a simplified but representative severe accident scenario
 - For the new fuel/cladding types to be measured against

- Simplified and generic
 - Applicable to many reactor designs
 - No event-specific operator actions
 - Should envelope all realistic LOCA accidents, e.g., Station Blackout

- After the core has been uncovered, no operator interaction
 - The system is let go until core integrity is lost
Proposal

- Zion Station Blackout scenario
 - Calculated using MAAP
 - 4-loop Westinghouse PWR

- Disabling creep rupture
 - No system depressurization
 - Conservative assumption

- Complete absence of active cooling
 - Temperature evolution envelopes other, less severe accidents

- Scenario probably applicable to PWR and BWR
 - Starting the clock when the core begins to uncover
Calculation is extended until the core has disintegrated

The "SiC" curve reflects an assumed perfectly inert cladding
 - Any significant cladding-steam reaction will lead to higher temperatures
 * Should be included in materials-specific application of the model
Suggested parameters to calculate

- Cladding-steam reaction rate
 - Enhances temperature and hydrogen generation
 - Feeds back on reaction rate
 - Coated cladding will have a two-tiered behavior

- Release of fuel and fission products
 - After first penetration of cladding

- Time to core disintegration
 - Melting of fuel
 - or
 - Gross failure of cladding