

Low Neutron Energy Cross Sections of the Hafnium Isotopes

G. Noguère, A. Courcelle, J.M. Palau

CEA/DEN Cadarache, France

P. Siegler

JRC/IRMM Geel, Belgium

JEFF Meeting, 2-4 may 2005, NEA Headquarters

Context of this Evaluation

- Natural hafnium is composed of six isotopes
- ¹⁷⁴Hf (0.16%), ¹⁷⁶Hf (5.26%), ¹⁷⁷Hf (18.6%), ¹⁷⁸Hf (27.28%), ¹⁷⁹Hf (13.62%), ¹⁸⁰Hf (35.08%)
- Thermal reactor engineering \Rightarrow BWR, naval propulsion, RJH, EPR, ...
- Neutron absorbing material \Rightarrow Capture Resonance Integral $I_0 \approx 2000$ barns
- Control rods \Rightarrow regulate the fission process

• Longstanding **reactivity worth underestimation** in specific CEA integral measurements in the EOLE (LWR square lattice) and AZUR (fuel plates of naval reactors) zero-power reactors located at the Cadarache

Interpreted as an overestimation of the natural Hf capture cross section

- JENDL-3.3 was the candidate for JEFF-3.1
 - G However, capture resonance integral is still too high for reactor applications
- New evaluation of the Resolved Resonance Range
 - New resonance parameters have been extracted by Trbovich from TOF measurements carried out at the RPI facility (E < 200 eV)</p>

Evaluation proposed for JEFF-3.1

CADARACHE

Thermal Energy range

Isotopic evaluation of the **negative resonances** based on the experimental data available in EXFOR \Rightarrow sequential Reich-Moore analysis of the (n, γ) and (n,tot) cross sections with the **SAMMY** code

Final comparison with the capture and total cross sections of the natural Hf

 \Rightarrow Significant discrepancies between experimental data

⇒ New accurate Time-Of-Flight measurements are needed

Epithermal Energy range

			0.14%	5.26%	18.60%	27.28%	13.62%	35.08%
Authors	Year	Ref.	¹⁷⁴ Hf	¹⁷⁶ Hf	$177 \mathrm{Hf}$	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ Hf
Bollinger	1953	[5]			6 resonances. [1-14]	1 resonance (7.6 eV)	1 resonance (5.6 eV)	
Igo	1955	[7]			2 resonances (1.1 eV) (2.4 eV)			
Harvey	1955	[8]	1 resonance (30.5 eV)		28 resonances [5.9-105]	1 resonance (7.8 eV)	26 resonances [5.7-110]	1 resonance (73.9 eV)
Levin	1956	[9]			2 resonances (2.4 eV) (6.5 eV)			
Ceulemans	1965	[10]			2 resonances (1.1 eV) (2.4 eV)			
Fuketa	1965-66	[11, 12]	10 resonances [4.2-211]	22 resonances [48.3-1068]	107 resonances [1.1-1019]	18 resonances [7.7-1163]	75 resonances [5.6-1050]	9 resonances [72.5-914]
Moxon ^a	1974	[13]	9 resonances [13.4-211]	22 resonances [7.8-1067]	26 resonances [1.1-202]	25 resonances [7.7-2090]	43 resonances [17.6-189]	40 resonances [72.3-11350]
Liou	1975	[14]			176 resonances [3-700]	12 resonances [3-720]		
Rohr	1976	[15]			98 resonances [10-300]			
Beer	1982-84	[16, 17]		106 resonances [2708-5229]	17 resonances [2653-2767]	138 resonances [2659-8924]	41 resonances [2660-3069]	135 resonances [2700-9865]
Trbovich	2004	[2]	9 resonances [4.2-153.5]	6 resonances [7.8-177.1]	86 resonances [1.1-199.5]	3 resonances [7.7-164.7]	41 resonances [5.7-198.0]	2 resonances (72.46 eV) (171.7 eV)

1965 Fuketa (E < 240 eV)

- ORNL Fast Chopper
- Transmission measurements of isotopically enriched samples
- Area Analysis (E_o and Γ_n)
- \Rightarrow First Hf resonance spectroscopy over a wide energy range
- \Rightarrow Significant number of resonances are missed (low energy resolution)

1974 Moxon (E < 30 eV)

- Harwell 45 MeV linac
- Capture and transmission measurements of natural Hf and isotopically enriched samples
- Multi-Level formalism (E_0 , Γ_γ , Γ_n and spin assignment for ^{177,179}Hf)
- \Rightarrow Discovery of the existence of the ^{178,176}Hf doublet near 7.8 eV
- \Rightarrow Major influence on the cross section of ¹⁷⁶Hf in the sub-thermal energy range

2004 Trbovich (E < 200 eV)

- RPI linac facility
- Capture and transmission measurements of natural Hf and isotopically enriched samples
- Reich-Moore analysis with the SAMMY code (E_o, Γ_γ and Γ_n)
- \Rightarrow Confirms the existence of the doublet near 7.8 eV
- \Rightarrow Gives a consistent set of resonance parameters

Isotope	Ref.	E_o	$\Gamma = \Gamma_{\gamma} + \Gamma_n$	Γ_{γ}	Γ_n	Γ_n/Γ	_	
		(eV)	(meV)	(meV)	(meV)	$(\times 10^{-2})$		Noutron rediction widths
¹⁷⁷ Hf	[5]	1.08 ± 0.02	45 ± 10					Neutron radiation widths
$(J^{\pi} = 3^+)$	[6]	1.095 ± 0.005	67.77 ± 1.0	66 ± 1	1.77 ± 0.02			reported by Moxon [13] are
	[7]	1.100 ± 0.005	69 ± 2	67 ± 2	2.10 ± 0.05	3.04 ± 0.11		
	[10]	1.1				3.66 ± 0.40		confirmed by Irbovich [2]
	[11]	1.099 ± 0.001	68.3 ± 1.0	66.4 ± 1.0	$1.92{\pm}0.03$	2.81 ± 0.06		
	[13]	1.0964 ± 0.0015	67.96 ± 2.86	65.64 ± 2.86	2.32 ± 0.013	3.41 ± 0.14		
	[2]	1.1001 ± 0.0001	67.45 ± 0.08	65.23 ± 0.08	$2.225 {\pm} 0.003$	3.299 ± 0.006		
¹⁷⁷ Hf	[5]	2.34 ± 0.05	<100					1γ lowered by 1.7 %
$(J^{\pi} = 4^+)$	[7]	2.39 ± 0.01	69 ± 1	60 ± 1	9.3 ± 0.2	13.5 ± 0.3		\rightarrow decrease of the Effective
	[9]	2.38	70 ± 7	63 ± 7	7.0 ± 0.5	10.0 ± 1.2		
	[10]	2.4				12.5 ± 0.8		Capture Resonance Integral
	[11]	2.384 ± 0.002	70.2 ± 1.5	61.3 ± 1.5	8.9 ± 0.2	12.7 ± 0.4		1 0
	[13]	$2.3837 {\pm} 0.0002$	69.81 ± 0.74	61.74 ± 0.74	$8.068 {\pm} 0.068$	11.54 ± 0.16	Г	
	[2]	$2.3868 {\pm} 0.0001$	68.7 ± 0.2	60.7 ± 0.2	8.04 ± 0.02	11.70 ± 4.48		Γγ lowered by 8.8 %
¹⁷⁸ Hf	[5]	7.6 ± 0.1	< 260					\rightarrow decrease of the Effection
$(J^{\pi} = \frac{1}{2}^+)$	[8]	7.8 ± 0.1			49 ± 3			\Rightarrow decrease of the Effective
2 /	[11]	7.78 ± 0.02			51 ± 3			Capture Resonance Integral
	[13]	7.7718 ± 0.0017	109.80 ± 2.14	57.67 ± 1.60	52.13 ± 1.42	47.47 ± 1.59	L	
	[14]	7.770 ± 0.027			49 ± 7			
	[2]	7.7865 ± 0.0001	106.8 ± 0.2	53.0 ± 0.2	53.83 ± 0.08	50.40 ± 0.12]	
¹⁷⁶ Hf	[13]	7.886 ± 0.010	61.7 ± 13.2	57 ± 12	~ 4.71	~ 7.63		$\Gamma n \times 2.1 \Rightarrow$ increase of the
$(J^{\pi}=\tfrac{1}{2}^+)$	[2]	$7.8891{\pm}0.0003$	$71.9{\pm}0.6$	$61.8{\pm}0.6$	$10.15 {\pm} 0.04$	$14.11{\pm}0.13$		Capture Resonance Integral

177 UF recommence at 1.1 aV and 2.3 aV 176.178 LIF doublet near 7.9 aV

 \checkmark Resonance parameters agree with the integral trends.

 \checkmark Uncertainties quoted by Trbovich are underestimated \Rightarrow systematic uncertainties not included

Trbovich et al. (below 200 eV)

Epithermal Energy range

✓ Natural Hf capture cross section dominated by the ¹⁷⁷Hf levels
 ✓ E = 7.8 eV ⇒ significant contribution of the ¹⁷⁸Hf resonance
 ✓ E < 100 eV ⇒ non negligible contributions of the ¹⁷⁹Hf resonances

Unresolved-Resonance Range and Continuum

Transmission of thin natural Hf samples measured at the **GELINA** facility with the TOF technique (T=77 K, T=300 K)*

^{*} P. Siegler et al., Int. Conf. ND2001

Natural Hf Capture Resonance Integral

Trbovich (RPI 2004):

 \Rightarrow compensation between the contributions of the ¹⁷⁷Hf , ¹⁷⁶Hf and ¹⁷⁸Hf

 \Rightarrow I_0 (JEFF-3.1) \approx I_0 (ENDF\B-VI.8) (Hfnat)

CADARACHE

Integral Quantities

libraries		¹⁷⁴ Hf	176 Hf	¹⁷⁷ Hf	178 Hf	179 Hf	180 Hf	nat Hf
		(0.16%)	(5.26%)	(18.6%)	(27.28%)	(13.62%)	(35.08%)	
BNL	σ_{th}	549±7	23.5±3.1	375±10	84 <u>+</u> 4	41±3	13.04 ±0.07	104.1±0.5
	Io	436±35	880±40	7173±200	1950±120	630±30	35±1	1992±50
ENDF\B-VI	σ_{th}	577.2	13.8	373.6	84.0	43.6	13.0	104.5
	Io	355.7	400.8	7212.4	1914.2	549.5	34.4	1972.3
JENDL-3.3	σ_{th}	561.5	23.5	373.6	84.0	42.8	12.99	104.9
	Io	363.5	893.2	7210.0	1914.1	522.6	34.0	1993.9
JEF-2.2	σ_{th}	403.4	14.0	376.4	78.4	39.1	13.1	102.7
	Io	321.9	614.1	7232.8	1922.5	543.9	35.6	1989.1
JEFF-3.0	σ_{th}	561.5	23.5	373.6	84.0	42.8	13.0	104.9
	Io	363.5	893.2	7210.0	1914.2	522.6	34.0	1993.9
JEFF-3.1	$\sigma_{ m th}$	549.5	21.3	371.8	83.9	40.8	13.1	104.2
	I	442.3	694.3	7211.1	1871.5	509.2	29.7	1968.7

✓New trend for the capture cross sections and the Capture Resonance Integrale of ¹⁷⁶Hf

✓ No significant modifications for ¹⁷⁷Hf

✓ Decrease of the ¹⁷⁸Hf, ¹⁷⁹Hf and ¹⁸⁰Hf Capture Resonance Integral

Preliminary Validation with TRIPOLI calculations

Simulation of two reactivity worth measurements carried out in the EOLE* (LWR square lattice) and AZUR* (fuel plates of naval reactors) zero-power reactors of the CEA-Cadarache.

CAMELEON experiment \Rightarrow LWR square lattice containing 25 Hf rods.

	EOLE CAMELEON experiments	AZUR
	(Hf rw. ~ 9000 pcm)	(Hf rw. ~ 7000 pcm)
Hf JEF-2.2	-352±30 pcm	-343±17 pcm
Hf JENDL-3.3	-398±33 pcm	
Hf JEFF-3.1	-333±31 pcm	-300±17 pcm

JEFF-3.1 still underestimates by about ~4% the natural Hf reactivity worth

^{*}O. Litaize and J.M. Palau, CEA-Cadarache

Conclusions and Perspectives

• This evaluation provides a body of consistent resonance parameters up to 200 eV

However: underestimation of the reactivity worth in specific integral measurements are still not solved (~4 %)

• Hafnium isotopes eval. remains a compilation of several source of information:

Accuracy of the **effective potential scattering length** (R')?

Consistency of the **average resonance parameters** (S_o , $<\Gamma_{\gamma}>$ and D_o)?

Determination of the upper energy limit of the Resolved Resonance Range?

• For the next release:

Experimental data in the Resolved Resonance Range would be valuable

New modeling of the Unresolved Resonance Range are needed (Cf. recent experimental data from FZK*)

Evaluation of the fast range performed by CEA/BRC to be considered