RECOMMENDATIONS FOR BASIC DATA EVALUATION

DEDUCED FROM

THE VALIDATION OF GAMMA-HEATING CALCULATIONS AGAINST EXPERIMENTS IN MASURCA

ANTON LÜTHI

Background

- Locally, gammas can contribute up to 90 % of total heating (e.g. in diluent sub-assembles, steel reflectors).
- The possibility of doing gamma-heating calculations has been implemented into ERANOS (European Reactor Analysis Optimized System).
- The calculations were tested against integral measurements.

Calculational Scheme for Gamma-Heating Calculations in ERANOS

Validation

- With respect to absolute gamma-heating measurements at the MASURCA facility in Cadarache
- Measuring techniques: TLD-700 (Li⁷F) (absolute values) + ionization chambers (relative values)
- Main configuration studied: ZONA2B, i.e. a PuO₂/UO₂ core surrounded by a steel/sodium reflector.

Confirmed through reevaluated measurements by D.Calamand et al.

Analysis of error sources

- ⇒ Differences most probably due to:
 - Errors in computing reaction rates
 - Errors in the production data used

Core (C/E ~ 0.89):

- 66 % of gamma heating in the core is due to fission gamma
- Fission rates are thought to be well computed

=> Presently adopted data for the fission gamma production too low

Values for γ Energy release in fission (MeV) used in ERANOS

Isotope	Prompt	Source	Delayed	Source	Total
		(MF 12/15)	(asymptotic)		release
U235	6.72	JEF2.2	6.35		13.07
U238	7.62	JEF2.2	7.89	From	15.51
Pu239	7.45	JENDL-3	5.11	JEF2.2	12.56
Pu240	7.01	ENDF/B-VI	5.43	Fission yield	12.44
Pu241	7.25	ENDF/B-VI	5.95	and	13.20
Pu242	6.17	ENDF/B-VI	6.35	Decay data	12.53
Am241	6.17	ENDF/B-VI	4.43		10.59

=> Recommendations

- 1. Gamma production data for fissile isotopes (Pu²³⁹) should be reviewed (Gamma fission emission would have to be raised by 10 % to be consistent with experimental findings)
- 2. Gamma production for fissile isotopes should be implemented into JEF (no data for Pu isotopes in JEF 2.2!)

Reflector (C/E ~ 0.84)

• Gamma heating is principally due to gammas created by capture in structural isotopes (Fe⁵⁶)

- The gamma energy released in a radiative capture is well known
 (~Q+E)
- => Computed capture rates in structural isotopes are too low

Findings consistent with parallel work by JC Bosq et al.

- => tried to explain reasons for the too soft neutron flux in the reflector
- => Data adjustment studies: -> Fe^{56} capture cross-section significantly too low below ~ 10 keV
- => Capture cross-sections (Fe⁵⁶) should be reviewed