Adjacent Meeting on the JEFF and EFF Projects
Issy-les-Moulineaux, December 15-16, 1997

Non-Fertile Fuel Benchmark: Sensitivity of the Calculational Results Against the Basic Cross Section Libraries

by

Sandro Pelloni*

* Important contributors: U. Kasemeyer and J. M. Paratte

Motivation for this work

• **U-free** fuel, consisting of a mixture of **Pu**, Er, Zr and Al in form of oxides.

Void ==> Neutron spectrum hardening.
Problem: Zr-resonances
(in the fuel and in the cladding).
Additionally: Er-resonances
(in the fuel).

• Large deviations of the computed void coefficients.

• Validation necessary.

Available Results for RG-1, RG-3, WG-1:

- ullet \mathbf{k}_{∞} ,
- Fluxes,
- Reaction rates:
 - Fission, "absorption" (absorption (n,2n)), production rates
 - for the nuclides,
 - for fuel, cladding, coolant, and the cell,
 - given in 6 energy groups (with boundaries at 14.9 MeV, 821 keV, 9.1 keV, 4 eV, 1.3 eV, 407 meV, 0.0), and
 - normalised such that the macroscopic "absorption" rate is unity.
- Void coefficients for 10%, 50%, 95%, and 99.9% void.
- Temperature coefficients of the fuel from 600 to 900 degree C.

Methods and Data

• Methods

Heterogeneous calculations (in 3 regions) with MICROX-2/ONEDANT (M/O).

• Data

- -Specific data libraries for the cell code MICROX-2 were generated based on the **JEF-1.1**, **JEF-2.2**, **ENDF/B-VI** (**Rev. 4**), and **JENDL-3.2** evaluations, using **NJOY94.10/MICROR**.
- The "Reference" Analysis is based on a mixed library, which combines ENDF/B-IV data for natural zirconium with JEF-1.1 data for the remaining nuclides (===> as in BOXER).

(Cell) Calculations with MICROX-2

- Fission spectrum: Linear combination of data for the single actinides.
- Dancoff factors: pre-calculated analytically (Segev's method) for the square lattice.
- Above 7.1 keV: Bondarenko formalism:
 - semi-log,
 - $-\sigma_0 = 10^{10}$, 1000, 100, 50, 20, 10, 5, 1 barns, for all nuclides except ¹⁶O,
 - in 60 fine groups:
 - * $\Delta U = 0.1$ for E > 111.1 keV (groups 1-50),
 - * $\Delta U = 0.25$ for E < 111.1 keV (groups 51-60),
 - weighting function: EPRI cell LWR (IWT=5),
 irrespective of the voided situation.
 - Resonance calculation in 2 zones, performed
 - in the energy range 7.1 keV 2.4 eV,
 - using ~ 10000 energy points equally spaced in lethargy,
 - clad and moderator are smeared.
 - Below 2.4 eV: Thermal treatment in 101 fine energy "points".

(Discrete-Ordinates) Transport Calculations with ONEDANT

- based on the original benchmark-models (non-buckled three-region cells with white reflection conditions on the outer boundaries),
- therefore using ("uncollapsed") P_0 - P_2 broad-group cross sections from MICROX-2, (diagonal transport correction with the correct Legendre moment dependence of the total cross section),
- \bullet \mathbf{S}_8 approximation,
 - 20 fine meshes in each of both fuel and water regions, and 2 meshes in the cladding.

Multiplication Factor k_{∞} at BOL

Cell	M/O	PSI	M/O	M/O	CEA	M/O	M/O	JAERI	
Type	"ref."	BOXER	JEF-1.1	JEF-2.2	JEF-2.2	ENDF/B-VI	JENDL-3.2	JENDL-3.2	
	anal.					(Rev. 4)			
RG-1	1.456	1.462	1.458	1.452	1.451	1.446	1.445	1.450	
WG-1	1.622	1.627	1.625	1.617	1.616	1.617	1.618	1.623	
RG-3	1.100	1.107	1.103	1.098	1.100	1.104	1.100	1.109	

- The agreement of both calculations based on the JEF-2.2 library is **good**.
- The k_{∞} s from the "reference" analysis are systematically smaller than the PSI values based on the BOXER code (maximum ~ 700 pcm for RG-3), and
- a similar, but more enhanced trend, is shown by comparing the results from the calculations based on the JENDL-3.2 library.
- The maximum k_{∞} spread as originating from calculations based on the same data library is ~ 900 pcm.

k_{∞} Variation at BOL, Using the Same Method (M/O) but Different Data Libraries (with Respect to the "Reference" Analysis)

	$\Delta \mathbf{k}_{\infty} \; (\mathbf{pcm})^1$									
Cell	JEF-1.1	JEF-2.2	ENDF/B-VI	JENDL-3.2						
Type			(Rev. 4)							
RG-1	249	-345	-938	-1047						
WG-1	274	-515	-518	-405						
RG-3	343	-154	475	89						

 $^{^{1}\}Delta k_{\infty}$ =0 for the "reference" analysis

- The resulting k_{∞} spreads are ~ 600 pcm for RG-3, ~ 800 pcm for WG-1, and ~ 1300 pcm for RG-1 respectively.
- The maximum spread achieved is therefore ~1300 pcm, diminishing to ~700 pcm if the results from the "reference" analysis as well as those obtained using the JEF-1.1 library are excluded from the comparison.
- It therefore appears that the uncertainties due to data and methods are similar, corresponding to the 1% spread in k_∞ values at BOL reported earlier.

るであってる

Void Coefficients at BOL

Cell	VF	"ref."	PSI	M/O	M/O	CEA	M/O	M/O	JAERI
Type	(%)	anal.	BOXER	JEF-1.1 JEF-2.2		JEF-2.2	ENDF/B-VI	JENDL-3.2	JENDL-3.2
				<u></u>			(Rev. 4)		
	10	-86.8	-87.4	-85.5	-84.1	-86.5	-85.1	-86.9	-85.9
RG-1	50	-102.4	-105.0	-100.7	-97.6	-102.1	-97.6	-101.0	-101.2
	95	-6.8	-17.6	0.9	14.0	12.2	22.8	5.7	1.0
	99.9	1.0	-5.8	17.5	40.1	38.5	47.3	25.4	14.0
	10	-52.0	-52.8	-50.9	-49.3	-50.9	-43.8	-44.8	-49.1
WG-1	50	-68.6	-70.9	-66.6	-63.9	-66.7	-63.2	-66.0	-65.1
	95	-50.7	-59.0	-45.8	-31.1	-33.0	-29.8	-40.1	-43.4
	99.9	-52.5	-53.9	-38.1	-15.3	-16.9	-20.4	-29.6	-40.0
	10	-135.0	-137.0	-132.9	-131.0	-134.3	-112.4	-115.4	-129.3
RG-3	50	-120.7	-126.2	-117.3	-113.4	-119.3	-106.0	-111.9	-112.9
	95	59.1	42.6	66.7	85.0	81.4	109.2	90.3	97.2
	99.9	86.1	80.9	102.6	132.3	130.5	146.0	127.4	137.8

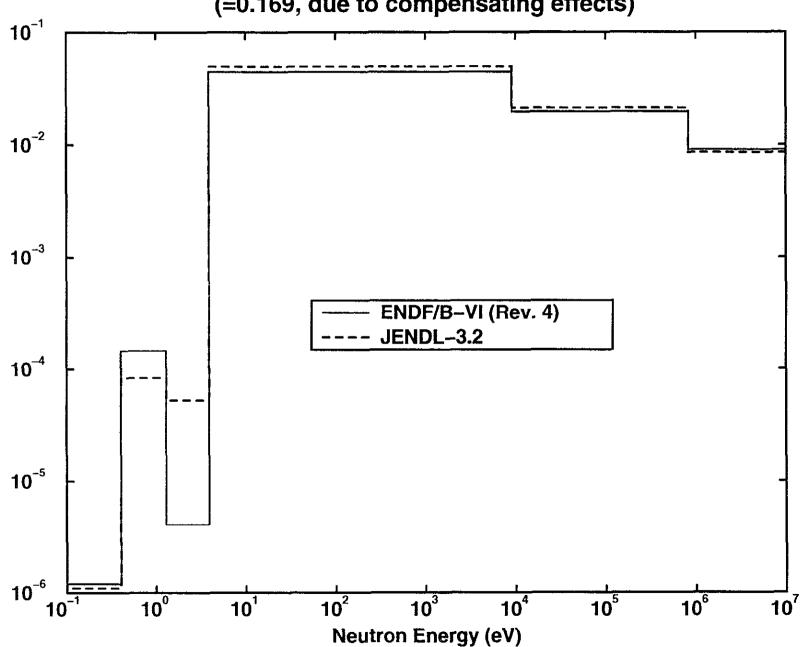
- For the cells without erbium, the void coefficients agree fairly well for not too high void fractions <50%.
- The new results with the JEF-2.2 library are slightly more positive (less negative) than the CEA values (max. 5.9 pcm/% void).
- Those from the "reference" analysis agree sufficiently well with the other BOXER values, except for the cells with 95% void, the "reference" analysis giving systematically more positive (less negative) values (max. 16.5 pcm/% void).
- Larger deviations of the new JENDL-3.2 results from the JAERI values. varying from 14 to -10 pcm/% void.

Variation of the Void Coefficients at BOL, Using the Same Method (M/O) but Different Data Libraries (with respect to the "Reference" Analysis)

$\Delta \mathrm{C_{V}^{VF}~(pcm/\%~Void)^{1}}$										
Cell Type VF (%)		JEF-1.1	JEF-2.2	ENDF/B-VI (Rev. 4)	JENDL-3.2					
	10	1.3	2.7	1.7	-0.1					
RG-1	50	1.7	4.8	4.8	1.4					
	95	7.7	20.9	29.6	12.5					
	99.9	16.5	39.1	46.3	24.4					
	10	1.1	2.7	8.2	7.2					
WG-1	50	2.0	4.7	5.4	2.6					
	95	5.0	19.7	21.0	10.7					
	99.9	14.4	37.3	32.2	23.0					
	10	2.1	4.0	22.6	19.6					
RG-3	50	3.4	7.3	14.7	8.7					
	95	7.5	25.9	50.0	31.1					
	99.9	16.6	46.2	59.9	41.3					

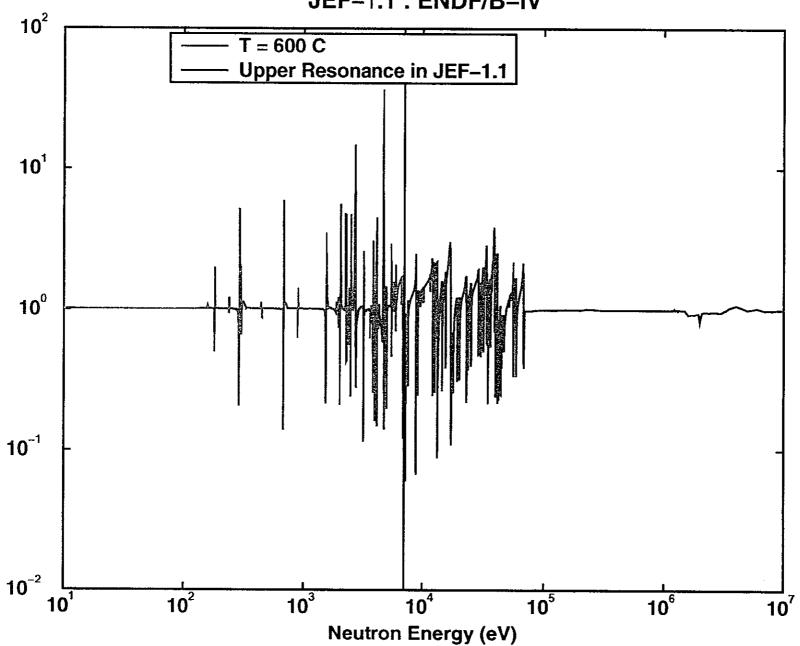
 $^{^{1}\}Delta C_{V}^{VF}$ =0 for the "reference" analysis

- Except for RG-3, data effects are relatively small for cells with void fractions upto 50% (<9 pcm/% void).
- For RG-3, the larger spread (22.6 pcm/% void) is dominated by effects due to data (erbium).
- The data sensitivity increases and dominates when the void fraction is increased from 50% to 99.9% (maximum spread is 59.9 pcm/% void for RG-3).

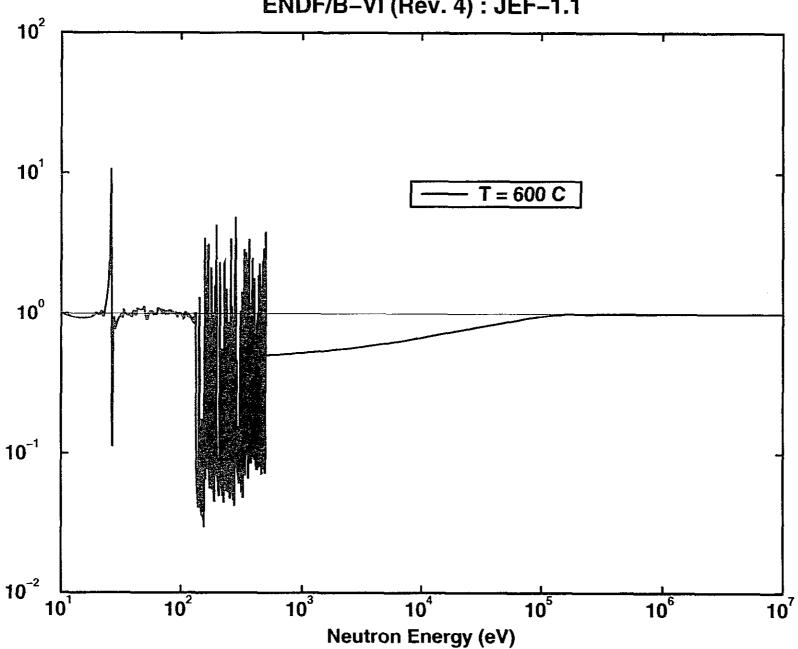

Contributions (α_i s) to the Void Coefficient (α) at BOL (RG-3, Void Fraction 99.9 %)

$\alpha_{\rm i}~({\rm pcm}/\%~{\rm void})$											$C_{V}^{99.9}$	
Region		Fuel Cladding Moderator										Cell
Nuclide	¹⁶ O ¹⁶⁶ Er ¹⁶⁷ Er			Zr	239 Pu	²⁴⁰ Pu	$^{241}\mathrm{Pu}$	$^{242}\mathrm{Pu}$	Fuel	Cladding	Moderator	Cell
(or Region)									Total	Total	Total	Total
"reference"	-2.9	-19.8	97.5	-123.5	-4.2	137.0	17.7	14.8	116.6	-45.1	14.5	86.1
analysis			•									
JEF-1.1	-2.8	-20.3	98.0	-113.1	-5.3	138.5	18.2	15.0	128.1	-40.3	14.8	102.6
JEF-2.2	-3.5	-20.8	100.9	-99.6	-2.3	143.4	18.8	15.6	152.6	-36.1	15.8	132.3
ENDF/B-VI	-3.6	-30.2	122.9	-109.0	-5.0	154.3	22.7	18.2	170.2	-40.2	16.1	146.0
(Rev. 4)												
JENDL-3.2	-2.6	-29.4	122.4	-114.1	-4.1	143.5	22.5	15.9	154.1	-41.5	14.8	127.4

 $^{^{1}\}Delta\alpha_{i}$ =0 for the "reference" analysis


- Two positive contributions (fuel, moderator), one negative contribution (cladding).
- "Reference" Analysis ==> JEF-1.1: α more positive (zirconium data).
- **JEF-1.1** ==> **JEF-2.2**: α more positive (zirconium and plutonium data + spectral effects).
- JEF-2.2 ==> ENDF/B-VI (Rev. 4): α more positive (erbium and ²⁴⁰Pu data + spectral effects).
- ENDF/B-VI (Rev. 4) ==> JENDL-3.2: α less positive (zirconium and ²⁴⁰Pu data).

Total "Absorption" Rates of Pu240 for RG-3 (99.9% Void) (=0.169, due to compensating effects)



()

Ratio of Total Cross Sections for Zirconium JEF-1.1 : ENDF/B-IV

Ratio of Total Cross Sections for Er167 ENDF/B-VI (Rev. 4): JEF-1.1

. ...

Conclusions (Methods)

• Well **thermalised** cells with void fractions upto 50%: Upper energy boundary for thermal range: ∼2 eV recommended.

Fast spectrum cells with large void fractions >90%:
 Appropriate shielding of cross sections of zirconium in the cladding required.

Conclusions (Methods and Data)

• k_{∞} (at BOL):

Methods \sim data uncertainties (\sim 1%).

- Void Coefficients (at BOL):
 - For not too high void fractions $\leq 50\%$:
 - * Cells without erbium: Methods~data uncertainties. Void coefficients predicted with sufficient consistency.
 - * Cells with erbium: Uncertainties increase if the void fraction is increased (===> data for erbium).
 - For high void fractions >50%:

Each cell type: Uncertainties increase if the void fraction is increased (===> data for zirco-nium, erbium, and plutonium). Large uncertainties (data) for void fractions $\geq 90\%$.

Recommendation

 Assign a high priority to the reduction of the uncertainty of these data (JEFF-3?)

===> Further step in clarifying the neutronics of advanced fuel cycles based upon such innovative fuels.